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Abstract. In this article we present a new method to estimate precisely
the cross-section of tubular organs. Obtaining a precise cross-section is
the critical step to perform quantitative analysis of those organs, for
which diameter or area are often correlated to pathologies. Our estima-
tion method, based on a covariance measure from the Voronoi cells of
the set of studied points, can be computed either from the skeleton rep-
resentation, or from the whole set of voxels of the segmented tubular
organ. This estimator can give a cross-section estimation from any point
of the organ, and is both more accurate and more robust to segmentation
errors than state-of-the-art methods.

1 Introduction

The diameter/area estimation of tubular organs such as vessels, airways or colons
is of interest since these measurements are often correlated with pathologies. A
reliable tool providing, with reproductive results, such geometric characteristics
and allowing to study their variations may lead to further progress in health
research. One domain which particularly requires such tools is the research on
pulmonary diseases. The airway wall thickness is a pertinent indicator correlated
with the severity of lung diseases such as asthma [9]. It can be obtained directly
on one slice of a CT image [8,12]: an experienced radiologist selects bronchi which
appear round on a CT slice and measures them generally by using a dedicated
software. This approach is obviously limited as it can only take into account
airways which long axes are perpendicular to the image slices. A more advanced
approach is based on a segmentation of the airway tree. The segmented volume
can be skeletonized so as to obtain its central line. Given a point of the central
line and its local direction, it is possible to reconstruct a cross-section of the
3D image which is orthogonal to the airway. Measurements of the airway wall
can then be performed in the computed cross-section. A comprehensive airway
analysis process following these 4 steps from segmentation to measurements of
the airway wall is described in [11].

In this paper, we focus on one step of the analysis process of tubular organs:
the computation of accurate cross-sections. This step is hardly described in the
existing works although the quality of the �nal measurements depends on it. It
is generally based on the analysis of the skeleton which is supposed to be a curve



skeleton i.e. a 3D digital curve. The main di�culty of computing an orthogonal
plane, or equivalently a tangent, to a curve skeleton comes from the irregularities
of the curve. A �rst approach is to smooth the skeleton before computing its
tangents as in [11]. The drawback of this approach is that smoothing may not
preserve the original object shape. A second approach is to use a 3D digital
tangent estimator which captures the exact shape of the 3D curve [10]. It is thus
sensitive to the skeleton defects.

We propose a new method to compute accurate orthogonal planes along
an unsmoothed skeleton, based on Voronoi Covariance Measure. The covari-
ance measure describes the shape of the Voronoi cells generated by the skeleton
points, from which we can deduce the local shape of the object. Furthermore,
this measure being de�ned on any compact, we can apply it either on the set of
skeleton points, similarly to existing methods, or on the whole set of points of
the segmented object, so it can take into account the full shape of the organ.

In section 2 we present the related works about the estimation of cross-section
from a segmented tubular organ, i.e. the skeleton extraction and the 3D tangent
estimation. In section 3 we detail the proposed method. Finally we present the
results obtained on both synthetic and real data in section 4, with quantitative
comparison with other methods.

2 Related works

As was said in the introductory part, the objective of this article is to estimate
precisely the cross-sections along a tubular organ. As input data, we suppose to
be given a segmentation of the processed organ, i.e. a connected set of points
of the 3D digital grid. The usual way to extract cross-sections consists in two
steps: (1) skeletonization of the object, (2) estimation of the tangential direction
at each point of the skeleton to obtain the normal vectors of the cross-section
planes.

There are di�erent de�nitions of the skeleton of a digital object, depending
on the wanted properties. In the case of a tubular organ, a natural representa-
tion is a curve-skeleton, i.e. a thin curve of digital points following the centerline
of the organ. An e�cient way to obtain such a curve-skeleton is to use a thin-
ning algorithm that will "peel" the object until its is reduced to its centerline.
However the obtained skeleton always presents defects irrespective of the thin-
ning method used. Small irregularities of the segmented object lead to unwanted
small branches and deformations of the skeleton (see �gure 1). Small branches
can be deleted by a pruning algorithm but the skeleton deformations that are
not consistent with the object shape can distort the cross-section computation.
In this paper, we use the thinning algorithm presented in [6], because it is ro-
bust to noise, produces a connected skeleton and is parameter-free. Some more
recent methods providing the same properties have been tested such as �ltered
euclidean skeletons [2], but they do not provide better results on our speci�c
tubular case (see �gure 1).



(a) (b) (c)

Fig. 1: (a) Part of a segmented airway-tree and its skeleton. (b) Small irregu-
larities of the segmented object lead to deformations of the curve-skeleton. (c)
Euclidean skeleton computed using the method described in [2].

One can de�ne the tangent vector at a point of a 3D digital curve as the
vector linking this point and one of its two neighbors on the curve. However,
this naive tangent estimation is obviously very sensitive to noise and can not
yield accurate results in our context. Other algorithms were designed to better
integrate the neighborhood around a point for tangent computation.

Among them the 3D tangent estimator λ-MST recently presented in [10]
relies on the recognition of digital straight segments (DSS) along a 3D digital
curve. A maximal DSS is a connected subset of the curve corresponding to the
digitization of a straight line and which cannot be extended forward or backward.
As one point of the curve can belong to several maximal DSS, the main idea is
to average the orientations of all the DSS passing through a point in order to
compute its tangent (see �gure 2).

More precisely, the tangent vector at a given point x is computed as:

t(x) =

∑
M∈P (x) λ(eM (x))tM∑
M∈P (x) λ(eM (x))

(1)

where P (x) is the set of maximal DSS passing through x and tM is the unit
direction vector of M . The weights depends on the eccentricity of the point

x relatively to the segment M which is de�ned as eM (x) =
ix −mM

nM −mM
where

ix − mM is the distance as the di�erence in indices between point x and the
last point of M , and nM −mM is the DSS length. The function λ is designed
to give more weight to the orientation of a DSS if x is close to its center. In our
experiments, λ is the triangle function with λ(0) = 0, λ(1) = 0 and a peak at
0.5.



Fig. 2: Computed tangent (red line) at red point on a 3D digital curve. The
computed tangent corresponds to a weighted average of the orientations of the
digital straight segments (in green) passing through the point.

3 Proposed method

In this article we propose to de�ne a new method to compute precise cross-section
for tubular organs, based on the Voronoi Covariance Measure (VCM).

The VCM was �rst introduced in [7] to estimate normals and curvatures
on point clouds sampling a surface. This tensorial measure was shown to be
resilient to Hausdor� noise. More recent results proved that it is even robust
to outliers [3]. A digital variant of the VCM was de�ned to analyze digital sets
and surfaces [4]. This digital measure was shown to be close to its continuous
counterpart and to be e�ciently computable. Furthermore its �rst eigenvector
was shown to be multigrid convergent toward the surface normal. It is thus
a reliable tool to estimate normals of digital shapes. We propose to develop
a cross-section estimator, based on the VCM, that analyse the skeleton of an
object. Furthermore we will show that this new tool can also take into account
the whole segmented object. Thus the estimator does not only rely on the shape
of the skeleton, but can analyze the local shape of the object.

By construction, the VCM computes a covariance matrix of vectors that
are aligned with the gradient of the distance to the shape function. Hence, its
�rst eigenvector points toward the normal to the shape (it is the direction that
maximizes the distance to the shape when moving along it). Voronoi cells de�ned
by input points tends to align themselves with this gradient. The VCM computes
the covariance matrix of all vectors within neighboring cells, hence most of the
vectors point in the direction of the shape normal. This is why the VCM robustly
estimates the normal direction to the shape.

The VCM was designed to analyse surface sampling, but it can in fact also
serve our purpose of �nding cross-sections of curve-like shapes. Note that the
normal cone of the curve is exactly its cross-section plane. The two �rst eigendi-
rections of the VCM are not predictable, but they will both try to span the
normal cone. Since they are forced to be orthogonal, they will both lie in the
cross-section plane.



The digital approximation of the VCM is de�ned [4] on any point p of a
digital set, by considering a neighborhood of p de�ned by a ball, and summing
the covariance measure of the Voronoi cells for which the generator is inside this
neighborhood.

De�nition of (digital) Voronoi Covariance Measure. Let X be a set
of points of the 3D digital grid Z3. ΩX(R) is de�ned as the set of digital points
contained in the R-o�set of X, i.e. ΩX(R) = {x ∈ Z3|miny∈X ‖y−x‖ ≤ R} (see
�gure 3). The Voronoi diagram of X partitions the space into cells. Each cell
of this Voronoi diagram contains exactly one point of X, called the generator

of this cell. We de�ne the projection pX(z) of an arbitrary point z ∈ R3, as the
generator of the cell which contains z. It follows that any point x of ΩX(R) is
projected in X through pX . The point pX(x) is also the point of X minimizing
its distance with x.

Given a point y for which we want to compute the VCM value, we center on
y a ball of radius r (denoted by Br(y)). Then the subset of points considered for
the computation consists in all the points at distance no greater than R to X
(i.e. ΩX(R)) the projection of which lies in this ball. Therefore, let DIX(y) :=
ΩX(R)∩p−1X (X ∩Br(y)) be the domain of integration for point y (orange subset
on �gure 3, right). The digital VCM is then de�ned as a summation of tensorial
products:

VX(y) =
∑

x∈DIX(y)

(x− pX(x))(x− pX(x))t

It is also easily seen that we can split the computation per Voronoi cell, as
a �rst pass. Then the VCM for point y is the sum of the VCM of every Voronoi
cell which generator lies in the ball of radius r around y. The digital VCM can
thus be computed e�ciently.

In our context, the Voronoi diagram of the digital skeleton de�nes a partition
of the space into Voronoi cells. Globally, the domain of integration is limited by
parameter R, which sets the maximum distance to input data. Points further
away are not taken into account. Then, for each point of the skeleton, we sum
the covariance measure of neighboring Voronoi cells, which gives a smoothed
geometric information of the local shape. The two �rst eigenvectors of VX(y)
then give a precise estimation of a basis of the plane that is at most orthogonal
to data, hence the cross section for this point.

Parameter setting. Our method has the same two parameters r and R
than the original method, which was used to study the geometry of surfaces.
In our context, we analyze tubular digital objects coming from medical images.
Those parameters are set using a priori -knowledge about the studied organ.
Parameter r corresponds to how many points must be considered to resemble
the local shape of the organ. It is dependent on the resolution of the acquisition
and the expected curvature of organs. Parameter R bounds the global domain
of integration within Voronoi cells. In our case, since the digital sampling has a
regular density, Voronoi cells are thin with almost parallel boundaries. Hence it
is not necessary to have a large value of R to get a correct estimation of normal
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Fig. 3: Left: the limits of the R-o�set of a set of digital points are drawn as a
cyan contour, while vectors connecting points within the R-o�set (i.e. ΩX(R)) to
their projection are drawn in deep blue. Right: Voronoi cells de�ning the VCM
Domain of integration for a kernel of radius r (i.e. ΩX(R)∩ p−1X (X ∩Br(y))) are
drawn in dark orange (both germs and projection vectors). The kernel itself is
drawn in red.

directions, and we can expect that a wide range of value for R will give similar
results.

Cross-section estimators. In fact, the VCM is generic enough to be applied
on an arbitrary set of points. Hence, it can be applied not only to the skeleton
of tubular organs, but to the whole tubular organs. We will see in next section
that this volumetric approach is even more precise and robust for cross-section
estimation along the organs. For any non singular matrixM , we write π(M) the
plane spanned by its �rst two eigenvectors (in decreasing order). For a digital
set V representing a tubular organ and letting X being the skeleton of V , we
thus de�ne our two cross-section estimators as:

1. The VCM cross-section estimator is de�ned for any point x ∈ X as π(VX(x)).
2. The Volume VCM cross-section estimator is de�ned for any point x ∈ X as
π(VV (x)).

Note that this volumetric approach also approximate cross-section directions
because

� the VCM is null on points located inside V , since Voronoi cells are reduced
to the point itself,

� and the VCM approaches the normal direction on points located on the
boundary of V .

The drawback of the second approach is that we need to know approximately
the radius of the studied tubular organs in order to set parameter r consistently.
It must be indeed big enough to reach the boundary of V from any point of X.
This is not a problem in our context since we know the organ under study.



4 Results

In this section, the VCM e�ciency for computing orthogonal planes is compared
to the λ-MST method. These methods have been implemented using the DGtal
library [1]. We will compare the methods both on synthetic and real data.

4.1 Noisy synthetic data

The goal of this section is to compare our method to the λ-MST estimator on
known volumes with altered surfaces. We have generated two di�erent synthetic
data sets: a slightly curved cylinder with constant diameter (Figure 4a), and a
straight elliptic cylinder with varying minor and major axes values (Figure 7a).

Tubular-like organs are obviously not perfect cylinders, and furthermore the
discretization and the segmentation processes will lead to many irregularities on
surfaces. These irregularities are the source of skeleton distortions. In order to
generate similar irregularities on the synthetic data we have added some noise
on the surfaces of the two objects. Noisy versions of the volumes are produced
using a simpli�ed version of Kanungo's algorithm [5], implemented in the DGtal
library. This method adds noise on binary images by switching the value of each
voxel, according to its distance d to the object boundary, with a probability αd.
Cavities and unconnected noisy voxels are then removed using morphological
operators.

(a) (b) (c)

Fig. 4: (a) Noisy tubular volume generated using a ball with constant radius, dis-
turbed by a Kanungo noise. (b) Volume with the digitized initial centerline used
to generate it in red. (c) Computed skeleton showing small distortion compared
to the original one.

The �rst test to assess our method's robustness consists in extracting geo-
metric characteristics on the computed 2D orthogonal planes, and in comparing
them to known values. At each point, we used the di�erent methods to compute
an orthogonal plane.



The intersection between each orthogonal plane and the unaltered digital
curved cylinder should be a disk. In order to quantify how close to a disk the
results are, two parameters are computed on the 2D shape resulting from the
intersection:

� the area in number of pixels

� the roundness, given by r =
4A

π ∗ a2
where a is the length of the major axis,

and A the area. This value ranges from 0 (line) to 1 (perfect circle).

The corresponding expected values can be computed with the known radius
of the cylinder (20 pixels).

(a) (b)

Fig. 5: (a) Area in pixels and (b) roundness mean values for all the orthogonal
planes found in a generated noisy tube volume. The λ-MST on the computed
skeleton (white) yields results with high-variability, whereas the λ-MST method
applied on the initial centerline and the two VCM methods applied on the com-
puterized skeleton and the volume respectively are consistent with the theoretical
values.

The results are obtained on 93 cross-sections. The mean values obtained
with the two variants of the VCM method (see �gures 5a and 5b), are closer
to the theoretical value than those obtained with λ-MST method on the com-
puted skeleton. Furthermore the di�erence in standard-deviation between the
two methods is signi�cative here. The coe�cient of variation, de�ned as the
ratio of the standard deviation to the mean, is 29% and 12% for the λ-MST,
against 1.5% and 1.1% for the VCM, for the area and roundness respectively.
This re�ects the high-variability of the λ-MST method, as it �nds a substan-
tial number of incorrect orthogonal planes, whereas the results of the proposed
method are consistent.



(a) (b)

Fig. 6: (a) Examples of orthogonal planes obtained on a noisy tube-like volume
with the volumetric VCM method and (b) typical associated 2D plane.

The second test on synthetic data consists in evaluating the di�erence be-
tween the normal direction of the estimated plane, and the known value. This
test has been performed on the straight elliptic cylinder for which the normal
direction at each point of its central line is constant. For each point of the skele-
ton, the angle defect between the computed normal and the expected normal is
determined for all methods. Figure 7b shows the results we obtain.

(a) (b)

Fig. 7: (a) Noisy elliptic cynlinder with varying minor and major axes, generated
along a centerline with constant normal direction. The computed skeleton is
shown in red. (b) The angle defect (in degrees) between the computed normal
and the expected normal shows our method outperforms the λ-MST tangent
estimator.



The results are obtained on 50 slices. Using VCM on both the skeleton curve
and the volume yields an angle defect close to zero, with a low standard devia-
tion. The mean value of the angle defect are greater for the λ-MST, and again
su�ers from high-variability (standard deviation of 22 degrees against 1.1 and
0.46 degrees for the VCM on the curve and on the volume respectively). The
λ-MST estimator does not perform well because DSS recognition is sensitive to
slight pixel deviation in a curve: in some cases, short DSS are found which means
the computed orientation is not representative of the actual tangent (see �gure
8).

Fig. 8: Altered skeleton leading to short DSS computation and to deviated tan-
gent (red line) at red point.

4.2 Real data

In this section, we present results obtained on a bronchial tree acquired from
a CT-scan. The bronchi have been segmented manually, and the skeleton was
computed on the resulting volume with the method [6]. Parts of the skeleton are
impacted by irregularities of the surface. This leads to some incorrect orthog-
onal planes estimation with the λ-MST method (see �gure 9a) in these parts.
On the contrary, similarly as what was observed on synthetic data, the VCM
method gives consistent results which are not a�ected by slight distortions on
the skeleton.

(a) (b)

Fig. 9: Orthogonal planes computed on the skeleton of an airway-tree with (a)
λ-MST and (b) VCM. The λ-MST method gives many wrong cross-section di-
rections while the VCM method is consistent all along the path.



We would like to point out that the user must take care on branching parts,
since many branches of the skeleton may in�uence the local computation (see
�gure 10). However, in practical cases, the orthogonal planes estimation is done
branch by branch and thus this in�uence is low. Furthermore the �rst planes
estimated after a branching part are not of interest since they will not only con-
tain a section from a tubular part, but also a large part of the second beginning
branch.

(a) (b)

Fig. 10: Orthogonal planes computed on a branching part of an airway-tree with
λ-MST method (a) and our method (b). Without branch separation, it can lead
to some misplaced cross-section.

5 Conclusion and Perspectives

We have presented in this article a new reliable method to perform cross-section
estimation on tubular organs. We have shown this method performs better than
existing ones on the skeleton of the object, and furthermore can be de�ned to rely
on the full shape of the object and thus not be in�uenced by the irregularities
of the skeleton.

This is a method of choice to produce automatic and reproducible quanti�-
cation of geometrical features from tubular organs, and thus can lead to new
advances in health research. Our �rst application focus on human airways anal-
ysis, but it can also be used to study other tubular organs.

Even if the two parameters of our method can easily be set in practice thanks
to the a priori -knowledge about studied organs, we are currently working to de-
velop a fully automated method. Our automatic settings of those parameters will
rely on local geometrical information such as curvature and distance transform
(in the volumetric estimation case) to automatically set appropriate radius.



Furthermore we plan to develop a new skeletonization algorithm based on
our method. Since it produces orthogonal planes directly from the volume, their
centers of gravity can de�ne the skeleton points.
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