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Abstract. The Mumford-Shah (MS) functional is one of the most in-
fluential variational model in image segmentation, restoration, and car-
tooning. Difficult to solve, the Ambrosio-Tortorelli (AT) functional is of
particular interest, because minimizers of AT can be shown to converge
to a minimizer of MS. This paper takes an interest in a new method for
numerically solving the AT model [11]. This method formulates the AT
functional in a discrete calculus setting, and by this way is able to cap-
ture the set of discontinuities as a one-dimensional set. It is also shown
that this model is competitive with total variation restoration meth-
ods. We present here the discrete AT models in details, and compare
its merit with recent convex relaxations of AT and MS functionals. We
also examine the potential of this model for inpainting, and describe its
implementation in the DGtal library, an open-source project.
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1 Introduction

This paper takes an interest in a new numerical method to solve the Ambrosio-
Tortorelli (AT) functional [1]. This functional is a well known non-convex re-
laxation of the famous Mumford-Shah (MS) functional [17], which has many
applications in image segmentation [2,6,18], restoration [2,4,5,8,12,19,23], car-
tooning [20] or inpainting [10]. This new method for solving AT redefines this
functional into a discrete calculus setting and is presented in details in [11].

⋆ This work has been partly funded by CoMeDiC ANR-15-CE40-0006 research grant.



Contributions. The present paper is a companion to the original paper [11],
and complements it on several points. First of all, the possible formulations of
AT in discrete calculus are discussed and compared in more details. Secondly,
we examine other convex relaxations of the Ambrosio-Tortorelli and Mumford-
Shah functionals (Kee and Kim [15], Strekalovskiy and Cremers [20]) and we
compare our approach to them. Third, we study the influence of parameters in
the method, as well as the possible scale spaces induced by the model. Fourth,
we test the possible application of our discrete AT model to inpainting problems
and discuss its potential and drawbacks. Last, we describe its implementation
in the DGtal library [22], which is an open source C++ library for image and
geometry processing of digital data.

Outline. The paper is organized as follows. We first briefly introduce the MS
and AT functionals as well as the many variants and discretizations proposed in
the literature (Section 2). We then present our discrete formulations of the AT
functional, which is expressed in a discrete calculus framework, and the algorithm
for its numerical optimization (Section 3). Our approach is compared to several
state-of-the-art convex relaxations of MS or AT in Section 4. Parameters and
their associated scale spaces are discussed in Section 5. The potential of our
discrete AT for inpainting is encompassed in Section 6. Section 7 concludes by
describing the implementation of our AT models in the DGtal library.

2 The Mumford-Shah and Ambrosio-Tortorelli
functionals

The Mumford-Shah (MS) model was introduced in [17] to solve image segmen-
tation and restoration problems. This model was seminal to many important
contributions in image processing and analysis, such as the Rudin-Osher-Fatemi
(ROF) restoration method, the total variation (TV) denoising, Chan-Vese or
Boykov-Jolly segmentation methods. The main idea is to see the input grey-
level image as a function g ∈ L∞(Ω) where Ω is some domain of R2, and to
seek the solution as a piecewise smooth function u that approaches g. The loci
of discontinuities K is also a variable of the problem. Another strong idea is that
the “size” of K is penalized. So the MS model is the optimal solution (K,u) to
the following functional:

MS(K,u) = α

∫
Ω\K

|u− g|2 dx +

∫
Ω\K

|∇u|2 dx + λH1(K ∩Ω) (1)

where α, λ > 0 and H1 denotes the 1-dimensional Hausdorff measure. We rec-
ognize in the first term the L2 approximation to the input image, the second
term requires the smoothness of u, while the last term penalizes the length of
discontinuities K.

The MS functional is difficult to solve in this form, so many relaxations have
been proposed to overcome this issue. We take an interest in the Ambrosio-



Tortorelli relaxation [1], defined as:

ATε(u, v) =

∫
Ω

α|u− g|2 + v2|∇u|2 + λε|∇v|2 + λ

4ε
|1− v|2 dx, (2)

for functions u, v ∈ W 1,2(Ω) with 0 ≤ v ≤ 1.
In (2), function u is a smooth approximation of the input image g. Function

v is a smooth approximation of the set of discontinuities, and takes value close
to 0 in this set, while being close to 1 outside discontinuities. A remarkable
property of this functional is that it Γ -converges to (a relaxation of) the MS
functional as ε tends to 0 [1]. The intuition is that a large ε induces a solution
with a fuzzy set of discontinuities, which is then progressively narrowed to the
crisp 1-dimensional set of discontinuites as ε goes to 0.

However the minimization of (2) with standard discretization schemes such as
finite differences is not possible. Indeed, to achieve convergence, parameters ε, the
grid-step h and the ratio ε

h must all tend to zero [4]. So in practice we set ε ≈ 5h
but the resulting set of discontinuities is thick and fuzzy (sometime more than 6
pixels wide), and the restoration is very poor in these regions. To overcome this
issue, Bourdin and Chambolle [4] proposed a finite element method with adaptive
domain refinement around discontinuities. It will be shown later that this method
is still not satisfactory, despite the added complexity. These difficulties explains
why the AT model is not a popular approach in image processing, and why TV,
ROF, or graph cuts methods have been heavily used instead.

For more details about other similar variational models for image processing
and more background about related works, we refer the reader to [11].

3 Discrete calculus formulations of AT functional

In [11], a different formulation of the AT functional was proposed, which retains
its main characteristics (piecewise smoothness, penalization of the length of the
discontinuities), while being able to capture thin discontinuities. This reformu-
lation uses the setting of discrete exterior calculus (DEC), as described in the
context of computer graphics in [7] and image analysis in [13]. The advantage
of this setting is that one can control easily where the variables are defined, and
where they are coupled. In particular, the function v does not become identically
one even when ε tends to zero.

Discrete exterior calculus. The idea is to decompose the image domain Ω into
a cell complex K. Here, the faces of K are simply the pixels of the image, the
edges of K are the sides shared by two pixels, while the vertices of K are the
those shared by four pixels. For technical reasons, the dual complex K̄ of K is
also needed and is defined in the usual way: a vertex of K is thus associated
one-to-one to a face of K̄, etc. A discrete k-dimensional form is just a map that
associates a scalar to a k-dimensional cell.3 If the number of k-dimensional cells
3 Although discrete forms can be defined without reference to the continuous setting,

one can see them as the integration of k-dimensional differential form over a k-cell,
resulting in a scalar per k-cell.
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Fig. 1. Primal and dual complex and common Discrete Exterior Calculus (DEC) op-
erators.

of K is denoted by nk, then a discrete k-form is simply represented by a column
vector of size nk × 1.

We then define the usual linear operators between k-forms (see Fig. 1). We
denote by dk and d̄k the standard discrete exterior primal and dual derivative
operators. The derivative operator d0 is the oriented vertex-edge incidence ma-
trix of K, and has size n1 × n0. Since the complex K is the regular grid with
edge size 1, the dual derivative d̄1 is the transpose of d0. Similarly, the primal
derivative d1 is the oriented edge-face incidence matrix of K, of size n2 × n1,
and the dual derivative d̄0 is its transpose.

The Hodge star is an operator that maps a differential form onto its comple-
mentary differential form. Discrete Hodge star operators ⋆ sends k-forms of the
primal complex K onto n−k-forms of the dual complex K̄ (see again Fig. 1). In
our setting, these operators reduce to identity operations except for a change of
sign in some cases, and they also change the meaning of vectors. For instance,
if f is a 0-form on the vertices of K, ⋆f is a dual 2-form defined on the faces of
K̄. Clearly, it is also a vector of size n0 × 1 since there are n0 faces in K̄.

We define M01 the matrix which transforms a 0-form into a 1-form by av-
eraging the values on the two edge extremities, i.e. M01 = 1

2 |d0|. Moreover, we
use the edge laplacian defined in [13] by ⋆̄d̄0⋆d1 + d0⋆̄d̄1⋆.

Discrete formulations of AT. We first set u and g to live on the faces and v to live
on the vertices and edges. Pixels are faces, so functions u and g are 2-forms since
they represent the gray levels of each pixel. On the contrary, v is an estimation
of the set of discontinuities of u, and should be of null Hausdorff-1 measure
when ε → 0. Thus we set v in-between cells of non null measure, so in this
case on vertices as a 0-form, and on edges by averaging with M01. We call this
formulation AT2,0

ε . Looking at (2), the DEC reformulation is straightforward,
except for the second term, where v is a 0-form and ∇u a 1-form. Hence we use



matrix M01 to transport the 0-form v onto edges by simple averaging:

AT2,0
ε (u, v) =α⟨u− g,u− g⟩2 + ⟨M01v ⊙ ⋆̄d̄0⋆u,M01v ⊙ ⋆̄d̄0⋆u⟩1

+ λε⟨d0v,d0v⟩1 +
λ

4ε
⟨1− v,1− v⟩0. (3)

where ⊙ denotes the point-wise multiplication.
A second possibility is to define u and g on the vertices and v on the edges.

We denote this formulation AT0,1
ε . Contrary to the previous formulation, the

gray levels are seen as point mass on the center of pixels, so that functions u
and g are both 0-forms. An alternative interpretation is to say that pixel values
are dual 2-forms, while v is a dual 1-form in between u. It follows:

AT0,1
ε (u, v) =α⟨u− g,u− g⟩0 + ⟨v ⊙ d0u,v ⊙ d0u⟩1

+ λε⟨(d1 + ⋆̄d̄1⋆)v,(d1 + ⋆̄d̄1⋆)v⟩1 +
λ

4ε
⟨1− v,1− v⟩1. (4)

We further extend (3) and (4) to the vectorial case by associating to each
component of the input image n forms {g1, . . . , gn}, and the corresponding forms
{u1,. . . , un}, and summing over the coordinates. In this paper, we will use n = 1
for gray-level images and n = 3 for RGB color images.

Optimization. The functionals AT2,0
ε and AT0,1

ε are both sums of quadratic
terms, independently, but not simultaneously, convex in u and v. They must
have null derivative at optimum. We thus propose to alternatively solve for u,
then v. The derivatives can be given explicitly as linear systems. To simplify
notations, let A := d0, B := d1, A′ := ⋆̄d̄1⋆ and B′ := ⋆̄d̄0⋆. It is worth to note
A′ and B′ are the respective transpose of A of B, except on the boundary of
the image. We get at optimum:

[
αId−B′⊺diag (M01v)

2
B′

]
u=αg,[

λ
4εId+ λεA⊺A+M01

⊺diag (B′u)
2
M01

]
v= λ

4ε1.
(5)

for the derivative of AT2,0
ε , and

[
αId−A⊺diag (v)

2
A
]
u=αg,[

λ
4εId+ λε(A′⊺A′ +B⊺B) + diag (Au)

2
]
v= λ

4ε1.
(6)

for the derivative of AT0.1
ε . Since all matrices are symmetric, definite and positive,

we use a Cholesky factorization to solve alternatively the two equations of (5)
(resp. (6)). Because of the Id additive term, the left-hand side is full rank,
yielding a unique minimum at each iteration. It is a known result in convex
analysis linked to block coordinate descent algorithms [3, Prop. 2.7.1], that these
iterations must converge to a stationary point of AT2,0

ε ( resp. AT0,1
ε ). In the

optimization process, we start with a large enough ε1, in order to capture the
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Fig. 2. Minimization of AT with finite differences (FD), finite elements (FE) from [4]
and our approach AT2,0

ε on a triple point image with PSNR= 20.3dB.

discontinuities, and after convergence for a given ε, we decrease it by dividing it
by εr, until ε = ε2. We denote this process by ε = ε1 ↘ ε2. The main loop stops
when v reaches stability. Fig. 2 illustrates that our AT model are able to capture
discontinuities as a 1-dimensional set, since v is defined on 0- and 1-dimensional
cells.

Optimize-AT( (g1, ..., gn): 2-forms (resp. 0-forms), (α, λ, ε1, ε2, εr): reals );
Var (u1, ..., un): 2-forms (resp. 0-forms), (v, v′): 0-forms (resp. 1-forms), ε: real
;

begin
foreach i ∈ {1, ..., n} do ui ← gi;
v ← 1, ε← ε1;
while ε ≥ ε2 do

1 repeat
v′ ← v;
Solve 1st line of (5) (resp. (6)) for all ui;
Solve 2nd line of (5) (resp. (6)) for v;

until ∥v − v′∥ is small ;
ε← ε/εr ;

end
return ((u1, ..., un), v) ;

end

Limit cases. As is the case with many image restoration methods, our approach
assumes stationary noise and blur. Some spatially variant noise occurs in nature,
for instance Poisson noise [21]. As is illustrated on Fig. 3, when the noise is
spatially variant, suboptimal results are achieved. This is due to the parameters
α and λ being constant for the entire image. For future work, we plan to let α
and λ depend on x and thus choose locally the optimal pair (α, λ), and to adapt
AT to use data fidelity terms that are appropriate for some non-stationary noise
models [14].



Fig. 3. In this figure we have added a spatially-variant noise to the Mandrill image. In
this case it is not possible to find an optimal (α, λ) pair that denoises and segments
the image appropriately with our current model.

4 Comparisons with other relaxations of MS and AT
functionals

A frequent criticism about MS and AT functionals is that they are non convex.
Current optimization techniques thus do not extract the global optimum, and re-
sults are subject to initialization. This is for instance why TV models have gained
so much popularity, despite known problems (most notably staircasing instead
of smoothing). Other people have followed a different path and proposed convex
approximations of MS or AT. Strekalovskiy and Cremers have proposed a trun-
cated quadratic potential to approach directly the MS model [20], which leads
them to a fast algorithm for segmentation and cartooning. Kee an Kim proposed
in [15] three convex relaxations of AT : a quadratic relaxation, a linear relax-
ation, and the last one based on a factorization theorem due to McCormick [16].
They used a gradient descend algorithm to compute the minimizers, and ob-
served that the best results are obtained with the linear relaxation. We compare
in Fig. 4 the results of Kee and Kim, the results of Strekalovskiy and Cremers,
and our approach on the images used in [15].

We can see that the McCormick relaxation (Fig. 4 (c)) retains many artifacts
while the quadratic relaxation (Fig. 4 (d)) leads to blurry reconstructions. The
results obtained with the linear relaxation (Fig. 4 (e)) are piecewise smooth, but
we observe a poor reconstruction of angles in the vectorial case. Furthermore we
see on Fig. 4 (f) that they obtain diffuse and sometimes false contours.

The convex relaxation of Strekalovskiy and Cremers leads to piecewise smooth
results (Fig. 4 (b)), with sharp discontinuities, similar to our approaches (Fig. 4
(g)-(h)).

In Fig. 5, we compare the results of TV model implemented in [9], the results
of Strekalovskiy et. al. [20], and our approach on synthetic images. For all
methods, we set the parameters that maximize the PSNR (see Tab. 1). We
observe the characteristic staircasing effect with the TV method. Strekalovskiy
et. al. and our method are robust to noise and yield piecewise smooth results.



(a) input g (b) Strekalovskiy (c) McCormick relax. (d) Quadratic relax.
u [20] u [15] u [15]

(e) Linear relax. (f) Linear relax. (g) AT0,1
ε (h) AT2,0

ε

u [15] v [15]

Fig. 4. Comparison of the minimization of convex relaxations of AT (extracted from
[15]), MS [20] and our approach on images extracted from [15]. In all cases, parameters
were fixed to get best possible SNR.

5 Influence of parameters and scale spaces

The Γ -convergence parameter ε controls the thickness of the contours. Large
values of ε convexify the AT functional and help to detect the discontinuities.
Then, as ε goes to 0, the contours become thinner and thinner (see Fig. 6).

On the other hand, for a large enough and fixed λ, the minimization of AT
is equivalent to a diffusion with a small perturbation dependent on α. Hence



Input TV [9] Strekalovskyi AT0,1
ε

et. al. [20]

sq
ua

re
σ
=

0
.2

sq
ua

re
σ
=

0
.4

sq
ua

re
σ
=

0
.8

di
am

on
d
σ
=

0
.2

di
am

on
d
σ
=

0
.4

Fig. 5. Comparison with competing methods. Noise level is specified in the first column.

Table 1. Best PSNRs results are in bold.

TV [9] Strek. et. al. [20] AT2,0
ε AT0,1

ε

square σ = 0.2 29.1528 30.3717 30.7517 30.8439
square σ = 0.4 23.7067 24.7827 24.8512 25.2425
square σ = 0.8 17.6858 17.3795 17.1204 18.3949
diamond σ = 0.2 27.3675 26.6616 27.7706 27.2441
diamond σ = 0.4 21.8341 21.1176 21.7719 21.6394



ε = 2↘ 2 ε = 2↘ 1 ε = 2↘ 0.5 ε = 2↘ 0.25

Fig. 6. ε scale space, for fixed λ = 0.006 and α = 0.1.

parameter α can be chosen for an initial blur of the input data : the smaller α
is, the stronger the initial blur is (see Fig. 7).

α = 1 α = 0.5 α = 0.1 α = 0.05 α = 0.01

Fig. 7. α scale space, for fixed λ = 1.0 and ε = 2↘ 0.25.

Finally, for fixed α (chosen so as to remove noise), the parameter λ controls
the length of discontinuities. Hence, for a large enough λ, the set of disconti-
nuities is empty because the minimization of AT is equivalent to a diffusion.
As the parameter λ decreases, more and more discontinuities are detected and
delineated, as we can see in Fig. 8. Note that results of AT0,1

ε and AT2,0
ε are

almost identical for this image.

λ = 0.2 λ = 0.1 λ = 0.05 λ = 0.025 λ = 0.0125

Fig. 8. λ scale space of AT2,0
ε , for fixed α = 0.48 and ε = 2↘ 0.25.



6 Potential of the model in image inpainting

It is easy to adapt the AT models for image inpainting. It suffices to have a
parameter α that varies across the image. More precisely, it is set to 0 wherever
the user selected a damaged zone while it is kept to its normal value elsewhere.
Furthermore, forms u are initialized with random values at these places.

We have checked if our discrete AT models can be interesting for image
inpainting. As illustrated on Fig. 9, it appears that model AT0,1

ε introduces
too many artefacts on artificial examples. Indeed, it optimizes the L1-length of
discontinuities, which is not a natural inpainting for a human eye. The problem is
that the L1-length has a very flat minimum, which is composed of all the discrete
paths in some rectangle joining two constraints. Model AT0,1

ε picks anyone of
these paths: this is governed by the order of cells in the linear systems.

However, model AT2,0
ε seems much more interesting. It is able to detect the

two triple points that optimize a four region contact as well as the 120 angle for
a three region contact. The reason is that this model averages the L1-length of
discontinuities especially when ε is large. Hence, the diffused L1-length is closer
to the natural L2-length and the model chooses a better L1-path for large ε.
As ε decreases, discontinuities stay at the correct location while getting crispier.
This explains why triple points are correctly detected by AT2,0

ε , if we start from
a large enough ε, which be must proportional to the width of the damaged zone.
In Fig. 9, setting ε = 4 ↘ 0.25 was good for all examples.

Of course, variational methods for image inpainting should be combined with
some non-local/texture filtering to compete with state-of-the-art approaches, but
we may conclude that AT2,0

ε is a candidate for such a hybrid inpainting method.

7 Implementation in the DGtal library

All presented material and programs have been implemented as a tool in the
DGtal library [22], which is an open-source C++ library, bundled with a set
of tools for digital geometry and image processing. Our discrete AT implemen-
tation relies heavily on the Discrete Exterior Calculus package. This package
provides data-structures and algorithms for manipulating discrete forms on cel-
lular complexes, linear operators such as derivatives, and wrappers for linear
system solvers.

We provide two command-line tools in the imageProcessing package of
DGtalTools (http://dgtal.org/doc/tools/nightly/imageProcessing), one called
at-u0-v1 that implements AT0,1

ε , the other called at-u2-v0 that implements
AT2,0

ε . They provide exactly the same functionalities and options.
Among functionalities, these tools can process grey-level or color images given

in PBM format. You may either restore the whole image or perform inpainting
by giving a mask image specifying damaged zone. SNR computation is provided
if you provide ground truth. Both tools export the restored image u as well as an
(possibly zoomed) image displaying both u and the set of discontinuities v. You
may set parameter α, the range for parameter ε, and either a value or a range



Fig. 9. Using discrete AT functionals for image inpaiting. Top row: input images.
Second row: results of AT0,1

ε with ε = 4 ↘ 0.25. Third row: results of AT2,0
ε with

ε = 4↘ 0.25. Fourth row: results of AT2,0
ε with ε = 1↘ 0.25. Fifth row: inpainting of

real picture with AT0,1
ε and ε = 4↘ 0.25.



of values for parameter λ. In the latter case, computations are performed in
descending λ order, delineating progressively more and more discontinuities. All
options are described in pages associated to these tools. Note also that several
generic classes have been created to facilitate the development of further image
tools that use a discrete exterior calculus formulation.

For further works, we plan to develop an on-line demo of these image restora-
tion methods, which uses the IPOL (Image Processing On-Line) platform. This
will facilitate even more the reproducibility of our research as well as fair com-
parisons with other restoration methods.
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