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Abstract—Essential image processing and analysis tasks, such
as image segmentation, simplification and denoising, can be
conducted in a unified way by minimizing the Mumford-Shah
(MS) functional. Although seductive, this minimization is in
practice difficult because it requires to jointly define a sharp set
of contours and a smooth version of the initial image. For this
reason, various relaxations of the original formulations have been
proposed, together with optimisation methods. Among these, the
Ambrosio-Tortorelli (AT) parametric functional is of particular
interest, because minimizers of AT can be shown to converge to a
minimizer of MS. However this convergence is difficult to achieve
numerically using standard finite difference schemes. Indeed,
with AT, discontinuities need to be represented explicitly rather
than implicitly. In this work, we propose to formulate AT using
the full framework of Discrete Calculus (DC), which is able to
sharply represent discontinuities thanks to a more sophisticated
topological framework. We present our proposed formulation,
its resolution, and results on synthetic and real images. We show
that we are indeed able to represent sharp discontinuities and
as a result significantly better stability to noise, compared with
finite difference schemes.
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I. INTRODUCTION

We are interested in some essential tasks of image pro-
cessing and image analysis, particularly image segmentation,
image restoration and image cartooning. For these tasks, the
Mumford-Shah (MS) functional [1] has emerged as a very
powerful formulation, seeking to represent an image with
a piecewise smooth approximation. This approximation can
be viewed as a denoising and simplication process, and the
frontiers of the smooth pieces can be interpreted as a segmen-
tation. In practice, however, the MS functional is difficult to
optimize due to the joint simplification and contour delineation
that it requires. Despite that difficulty, MS has served as an
inspiration to many very well known and widely used methods,
such as the Rudin-Osher-Fatemi (ROF) restoration method, TV
denoising, or the Chan-Vese and Boykov-Jolly segmentation
methods, and many others. The original formulation of MS
is in the continuous domain but purely discrete versions have
also been proposed (Graph Cuts). After recalling the MS func-
tional, we present a new digital formulation of the Ambrosio-
Tortorelli (AT) functional, an accurate approximation of MS
that converges toward it.

A. The Mumford-Shah functional

Given an input grayscale image defined in an open bounded
domain of R2, we represent its gray levels by a function g ∈
L∞(Ω). In the Mumford-Shah (MS) model, one wants to find
a pair (K,u), where the compact set K ∈ Ω̄ represents the
discontinuities of g and the function u ∈ W 1,2(Ω\K) is a
smooth reconstruction of g except on K. The pair (K,u) is
found by minimizing the Mumford-Shah functional [1]

MS(K,u) = α

∫
Ω\K
|u− g|2 dx +

∫
Ω\K
|∇u|2 dx

+λH1(K ∩ Ω) (1)

where α, λ > 0 and H1 denotes the 1-dimensional Haussdorff
measure. The first term forces the approximation u to be close
to the original image g, while the second one constrains u to
be smooth and the last one penalizes the length of the set of
discontinuities K.

But the minimisation of (1) depends on a pair (K,u) of
a priori independent objects. Hence, we work with a relaxed
version of the MS functional (1) ([2]), defined for a function
u ∈ SBV(Ω) by

MS(u) = α

∫
Ω

|u− g|2 dx +

∫
Ω

|∇u|2 dx + λH1(Ju) (2)

where Ju denotes the set of jumps of u, i.e. the set of
discontinuities of u. This relaxed functional depends solely on
u and we want to minimize it in the class of special functions
of bounded variation in Ω. Unfortunately the minimization
is still delicate due to the computation of the 1-dimensional
Haussdorff measure. We therefore turn to another formulation.

B. The Ambrosio-Tortorelli functional formulation

The Ambrosio-Tortorelli (AT) functional [3] is defined by

ATε(u, v) =

∫
Ω

α|u− g|2 + v2|∇u|2

+λε|∇v|2 +
λ

4ε
|1− v|2 dx, (3)

for functions u, v ∈W 1,2(Ω) with 0 ≤ v ≤ 1.
In (3), u denotes a smooth approximation of the input

image g while v is a smooth approximation of (1 − χJu
).

Ambrosio and Tortorelli proved in [3] that their functional
(3) Γ-converges to the MS functional (2) as ε tends to 0.
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Figure 1: Minimizing AT with finite differences on a triple
point with noise 0.2. The resulting thickness of v ∼ 6px

implies poor denoising on the contours of u.

Intuitively, a large ε induces a solution with a fuzzy set of
discontinuities, which is then progressively narrowed to the
crisp 1-dimensional set of discontinuites as ε goes to 0.

This notion of convergence ensures that if we can compute
a sequence (uε)ε of minimizers of AT , and if uε converges
to some function u ∈ SBV(Ω), then u is a minimizer
of the Mumford-Shah functional. For more details about Γ-
convergence and AT, we refer the reader to [4] and [5].

Unfortunately, the minimization of (3) with standard dis-
cretization schemes such as finite differences or finite elements
leads to difficulties. Chambolle and Bourdin [6] point out that
for convergence, parameters ε, the gridstep h and the ratio ε

h
must all tend to zero. In practice this is unfeasible, and ε is
set to approximately 5h. This implies that the set {v ≈ 0} is
thick, as we can see in Fig. 1. An alternative method, proposed
in [6], is to refine the meshing of the domain locally around
the set of discontinuities of u.

C. Related works

Many works derive from the study of the Mumford-Shah
functional, which can be seen both as a segmentation and
a restoration model. The MS functional is non-convex and
difficult to optimize, so most contributions propose workable
relaxations. On the restoration side, in [7], authors propose
an effective simplification resulting into a piecewise-constant
model for image denoising. In [8], an exact solution of the
Total Variation (TV) regularisation term using convex analysis
is proposed. Various implementations are freely available [9],
[10], [11]. On the segmentation side, the most common
simplification is the Chan-Vese model [12], which uses level
sets. In practice it is limited to a binary output. A convex
formulation is proposed in [13]. Approximate discrete methods
have also been proposed, for instance using Graph Cuts [14]
or parametric contour selection on hierarchical segmentation
representation, for instance [15], [16].

The Ambrosio-Tortorelli relaxation for both restoration
and segmentation was studied and discretized with a finite-
differences scheme in [17]. As we shown on Fig. 1, this leads
to a thick approximation of v and poor convergence properties
as ε → 0. To correct this, authors in [6] use finite elements,
and an adaptive mesh that is realigned and refined around
discontinuities. Kee and Kim [18] proposed several convex
relaxations of AT functional, by using the factorability of some

non-convex problems. Their best relaxation leads to blurry
edges, as well as some false contours. Recently [19] proposed
a piecewise smooth segmentation method that is a convex
relaxation of MS using Fenchel duality, but this relaxation
is sensitive to noise. Recently an AT-based formulation for
tubular structure segmentation was proposed in [20], using
finite differences.

Finally authors in [21] studied regularization terms similar
to AT, and [22] studied their convergence, with implications
to our problem.

D. Contributions and Outline

We therefore propose a new approach to the resolution of
AT. We discretize it in the framework of discrete calculus.
This framework can encode differential forms of different
dimensions by relating them to cells of different dimensions.
The key ingredient of our digital formulation is that we define
v to live in-between u. Intuitively, since discontinuities are
supposed to have null Hausdorff-2 measure, this is exactly
where discontinuities should be defined. They are thus in-
between smooth parts which have non null Hausdorff-2 mea-
sure. In Section II, we present the standard discrete calculus
operators and two digital formulations of AT functional. Then
in Section III we evaluate experimentally our digital AT
models for both restoration and segmentation of gray-level and
color images, and compare them with standard approaches.
Finally, we discuss, conclude and propose future works in
Section IV.

II. DIGITAL AMBROSIO-TORTORELLI FUNCTIONAL

A. Discrete exterior calculus

We want to optimize (3). Since standard numerical schemes
are not really adapted to this optimization, we propose to
reformulate it in the setting of discrete exterior calculus (DEC),
as described in the context of computer graphics in [23] and
image analysis in [24]. The rationale for this is the greater
degree of control over the topology of the problem that this
approach allows. The image domain is decomposed into a 2-
dimensional cubical complex K, composed of vertices, edges,
and faces (see Fig. 2). adjacent vertices. We denote by dk and
d̄k the standard discrete exterior primal and dual derivative
operators. Given a k−form, the hodge star operator ? returns
the corresponding 2−k form. We define M01 the matrix which
transforms a 0-form into a 1-form by averaging the values on
the two edge extremities, i.e. M01 = 1

2 |d0|. Moreover, we use
the edge laplacian defined in [24] by ?̄d̄0?d1 + d0?̄d̄1?.

B. Discrete formulations of AT

We first set u and g to live on the faces and v to live on
the vertices and edges. Functions u and g are 2-forms since
they represent the gray levels of each pixel. Since v is an
estimation of the set of discontinuities of u, it should be of
null Haussdorff-1 measure. This implies v should be set in-
between cells of non null measure, so in this case on edges or
vertices. In the following formulation, we set v solely on the
vertices, i.e. it is a 0-form. We call this formulation AT2,0

ε . In
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Figure 2: DEC operators

this instance the only difficulty lies in the second, cross term
of (3), since its components do not live on the same elements.
Hence we use matrix M01 to transport the 0-form v onto edges
by simple averaging, yielding (4):

AT2,0
ε (u, v) =α〈u− g,u− g〉2 + 〈M01v,?̄d̄0?u〉21

+ λε〈d0v,d0v〉1 +
λ

4ε
〈1− v,1− v〉0. (4)

A second possibility is to define u and g on the vertices and
v on the edges. We denote this formulation AT0,1

ε . Contrary
to the previous formulation, the gray levels are seen as point
mass on the center of pixels, so that functions u and g are both
0-forms. An alternative interpretation is to say that pixels are
dual 2-forms, while v is a dual 1-form in between u. This
yields (5):

AT0,1
ε (u, v) =α〈u− g,u− g〉0 + 〈v,d0u〉1〈v,d0u〉1

+ λε〈(d1 + ?̄d̄1?)v,(d1 + ?̄d̄1?)v〉1

+
λ

4ε
〈1− v,1− v〉1. (5)

We further extend (4) and (5) to the vectorial case by
associating to each component of the input image n forms
{g1, . . . , gn}, and the corresponding forms {u1,. . . , un}, and
summing over the coordinates. In this paper, we will use n = 1
for gray-level images and n = 3 for RGB color images.

C. Optimization process

In both cases, the functionals AT2,0
ε and AT0,1

ε are sums
of quadratic terms. They are independently, but not simulta-
neously, convex in u and v. They must have null derivative at
optimum. We thus propose to alternatively solve for u, then
v. The derivatives can be given explicitly as linear systems:

[
αId−B′

ᵀ
diag (M01v)

2
B′

]
u=αg,[

λ
4εId + λεAᵀA + M01

ᵀdiag (B′u)
2
)M01

]
v= λ

4ε1.

(6)
for the derivative of AT2,0

ε , and
[
αId−Aᵀdiag (v)

2
A
]
u=αg,[

λ
4εId + λε(A′

ᵀ
A′ + BᵀB) + diag (Au)

2
]
v= λ

4ε1.

(7)

for the derivative of AT0.1
ε . Here A, B, A′ and B′ are the

matrices corresponding to the respective operators d0, d1,
?̄d̄1? and ?̄d̄0?. Otherwise said, A is the vertex to edge
incidence matrix, B the edge to face incidence matrix, and A′

and B′ their respective transpose (except on image boundary).
All matrices are symmetric, definite and positive, so we use a
Cholesky factorization to solve alternatively the two equations
of (6) (resp. (7)). Because of the Id additive term, the left-hand
is full rank, yielding a unique minimum at each iteration. It is
a known result in convex analysis linked to block coordinate
descent algorithms [25, Prop. 2.7.1], that these iterations must
converge to a stationary point of AT2,0

ε (resp.AT0,1
ε ).

III. NUMERICAL EXPERIMENTS

A. Results

We now present numerical results obtained by minimizing
the two digital formulations of the AT functional given by (4)
and (5) for gray-level and color images. We overlay in red the
set of discontinuities, which is defined to be either the set of
edges where the two adjacent 0-forms v are less than 1

2 in (4),
or when the 1-form v is less than 1

2 in (5). For reference to
the parameters, all images are normalized to [0, 1].

1) Scale-space: In the optimization process, we can in-
troduce a scale-space on the parameter λ. For fixed α, λ
constrains the discontinuities total length. Hence, for a large
enough λ none are present, so that the minimization of AT is
equivalent to a diffusion. We can then choose α for an inital
blur on the input data. Then, by decreasing λ, we capture more
and more contours, as illustrated in Fig. 3.

2) Joint restoration and contour detection: In the second
column of Fig. 4, we illustrate the restoration and segmentation
of the noisy triple point presented in Fig. 1, using our digital
formulations of AT. We can clearly see that v is no longer thick
and diffuse but matches the set of discontinuities of u very
well. This is due to the fact that decreasing ε progressively in
the optimization process. In the beginning, a large ε allows
us to localize approximately the set of discontinuities. As
ε decreases to 0, v becomes increasingly precise. In our
formulation, at the optimum v can truly be 1-dimensional,
lying in between pixel in both our digital formulations given
by (4) and (5). Indeed v is defined on null measure forms and
cannot vanish on them.

This particularity in our approach allows us to restore
images with texture or very thin structures, as illustrated on
the Barbara or mandrill pictures presented in Fig. 5 and Fig. 6
respectively.

The previous argument also explains the robustness to noise
of our approach, illustrated in Fig. 4 on the image of the triple
point with increasing levels of additive Gaussian noise, up to
very high levels with σ = 0.8.

B. Comparisons

In Fig. 7, we compare our approach to some state of
the art methods using TV convex relaxations of the MS
functional [10], [11]. We also compare to the recent work of
Strekalovskyi and Cremers [19], which also considers the AT
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Figure 3: Illustration of the λ-scale-space with AT 0,1
ε , Gaussian noise σ = 0.2, ε ∈ [1, 0.25], α = 0.162
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Figure 4: Behaviour of our algorithm for both formulation, with increased levels of noise. For all figures ε ∈ [1, 0.25]
parameters for AT2,0

ε , resp. λ = (0.0058, 0.0058, 0.0028, 0.0008) and α = (0.279, 0.135, 0.0126, 0.0032)
AT0,1

ε : resp. λ = (0.0001, 0.0048, 0.0005, 0.001) and α = (0.018, 0.1615, 0.0126, 0.0087)

Figure 5: Input corrupted with Gaussian noise σ = 0.1 (first column), restoration (second column), contours with AT0,1
ε ,

λ = 0.0054088 and α = 1.0 ; contours with AT2,0
ε , λ = 0.0064905 and α = 0.69. For both, ε ∈ [1, 0.25]

functional. The TV relaxations of MS do not produce contours,
so we focus on the restoration results. For a fair comparison,
for all methods, we set the parameters that maximize the
PSNR. Specifically:
• TV denoising using the Chambolle algorithm [11] : we

have to guess σ the standard deviation of additive Gaus-
sian noise and λ is the parameter in front of the fidelity
term. In the experiments, λ is dynamically computed and
we found σ = 21 for the mandrill and σ = 23 for the

Lena image.
• ROF TV denoising using split Bregman [10], parameters

are the same as above.
Strekalovskyi and Cremers propose in [19] to directly

minimize the MS functional using a non-convex primal-dual
algorithm depending on two parameters α and λ : the first
controls the smoothing term while the thresholding parameter
λ forces a discontinuity when α|∇u|2 > λ. We optimized the
parameters via grid search.
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Figure 6: Restoration results on color images. Parameters: ε ∈ [1, 0.25]
AT2,0

ε : resp. λ = (0.0649, 0.0376) and α = (0.833, 0.469) AT0,1
ε : resp. λ = (0.0376, 0.0217) and α = (0.833, 0.48)

Table I: Best PSNRs results are in bold.

Barbara Mandrill Lena
TV, Getreuer [10] 29.69992 24.94800 29.35474
TV, Duran et. al. [11] 29.78958 24.96413 29.35980
Strekalovskyi et. al. [19] 29.17148 24.14088 28.46289
AT2,0

ε 29.86778 25.99681 28.91914
AT0,1

ε 29.91011 25.04922 29.03297

C. Implementation details

The tools used in this work will be made available in
the open-source DGtal library [26], which provides optimized
implementations of discrete exterior calculus operators. For the
Barbara picture (348x271) presented in Fig. 5, each inner loop
iteration takes approximatively 10 seconds and 30 seconds
when minimizing respectively (4) and (5). Optimization of AT
functional needs on average 5 iterations at any given ε.

IV. CONCLUSION

We have presented a novel algorithm for optimizing the non-
convex Ambrosio-Tortorelli functional, itself a high-quality
formulation of the full piecewise-smooth Mumford-Shah func-
tional. Using discrete calculus implementations, we have been
able to specify true 1D contour, set in between pixels, ensuring
sharp contours and smooth regions. Our algorithms are robust
to noise and provide good quality restoration, as evidenced in
table I. Future work will involve improving speed, introducing
anisotropy in the framework, and work on non-image data such
as point clouds or mesh restoration.
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