
New characterizations of full convexity⋆

Fabien Feschet1[0000−0001−5178−0842] and Jacques-Olivier
Lachaud2[0000−0003−4236−2133]

1 Université Clermont Auvergne, CNRS, ENSMSE, LIMOS, F-63000
Clermont-Ferrand, France

fabien.feschet@u-auvergne.fr
2 Université Savoie Mont Blanc, CNRS, LAMA, F-73000 Chambéry, France

jacques-olivier.lachaud@univ-smb.fr

Abstract. Full convexity has been recently proposed as an alternative
definition of digital convexity. In contrast to classical definitions, fully
convex sets are always connected and even simply connected whatever
the dimension, while remaining digitally convex in the usual sense. Sev-
eral characterizations were proposed in former works, either based on
lattice intersection enumeration with several convex hulls, or using the
idempotence of an envelope operator. We continue these efforts by study-
ing simple properties of real convex sets whose digital counterparts re-
main largely misunderstood. First we study if we can define full con-
vexity through variants of the usual continuous convexity via segments
inclusion, i.e. “for all pair of points of X, the straight segment joining
them must lie within the set X”. We show an equivalence of full con-
vexity with this segment convexity in dimension 2, and counterexamples
starting from dimension 3. If we consider now d-simplices instead of a
segment (2-simplex), we achieve an equivalence in arbitrary dimension
d. Secondly, we exhibit another characterization of full convexity, which
is recursive with respect to the dimension and uses simple axis projec-
tions. This latter characterization leads to two immediate applications: a
proof that digital balls are indeed fully convex, and a natural progressive
measure of full convexity for arbitrary digital sets.
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1 Introduction

Convexity is a fundamental tool for analyzing functions and shapes. For digital
spaces Zd, digital convexity was first defined as the intersection of real convex sets
of Rd with Zd (e.g. see survey [11]). Although easy to formulate, resulting digital
convex sets may not be digitally connected in general. This deficiency prevents
local shape analysis, so many works have tried to constrain the connectedness
of such sets, for instance by relying on digital lines [5,1] or extensions of digital
functions [6,7]. Most works are limited to 2D, and 3D extensions do not solve
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all geometric issues [4]. It is also possible to define digital convexity from the
intersection of Euclidean convex sets with the lattice cubical complex [12], but
it remains unclear how to determine if a given cell complex is indeed convex. We
take an interest here in a recent alternative definition of digital convexity, called
full convexity [8,9], which guarantees the connectedness and even the simple
connectedness of fully convex sets. It is important to note that classical digital
primitives like standard and naive lines and planes are indeed fully convex, so
most of the classical tools of digital geometry fall into this setting.

Full convexity has already proven to be a fruitful framework for analyzing
the geometry of digital shapes [9,2,3]: local characterization of convex, concave
and planar parts, geodesics and visibility problems, reversible and tight recon-
struction of triangulated surfaces, digital polyhedral models. The purpose of this
paper is mainly to study its core properties and to exhibit new characterizations
of full convexity. Such results are important both from a theoretical perspective
(new characterizations lead to better understanding of what is digital convexity)
and from a practical algorithmic point of view. For instance the characterization
by idempotence of some cell operations [3, Theorem 2] lead to an enveloppe oper-
ator that builds a fully convex hull. The first morphological characterization [8,
Theorem 5] provides an exact algorithm to check full convexity involving 2d − 1
convex hull computations and lattice point enumeration; the second character-
ization in terms of maximal cells of [3, Theorem 5] lead to an exact algorithm
that requires only one convex hull computations and lattice point enumeration.

After recalling some essential background related to full convexity (Section 2),
we study in Section 3 if we can define a digital analogue of convexity through its
classical formulation of “inclusion of every straight segment”. Originally studied
by Minsky and Papert [10], their definition was far too unrestrictive since it
included many digital weird sets. We propose here a more reasonable analogue
(S-convexity) that we prove equivalent to full convexity in Z2, but not in higher
dimension. We then extend this definition to an analogue of “inclusion of every d-
simplices” (Sd-convexity) to get another characterization of full convexity in Zd.
Then we propose in Section 4 a recursive convexity (P -convexity): a digital set is
P -convex whenever it is digitally convex and each one of its projections along axis
is P -convex. Quite surprisingly, we show that P -convexity is indeed equivalent
to full convexity. This clearly opens new perspective for studying digital sets,
and we already provide here two immediate applications in Section 5. One is
the proof that subsets of the lattice hypercube as well as digital balls are always
fully convex, the other is a measure for digital sets that characterizes fully convex
sets. We conclude and describe a few perspectives to this work in Section 6.

2 Useful definitions and properties

We introduce here basic definitions and properties needed in the rest of the
paper. The references are [9][3]. In the sequel, C d is the cubical cell complex
induced by Zd. Its 0-dimensional cells are identified to points of Zd. The set C d

k

is the set of open k-dimensional cells of C d.
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The (topological) boundary ∂Y of a subset Y of Rd is the set of points in its
closure but not in its interior. The star of a cell σ in C d, denoted by Star (σ),
is the set of cells of C d whose boundary contains σ, plus the cell σ itself. The
closure Cl (σ) of σ contains σ and all the cells in its boundary. In this paper, the
cell boundary operator, also denoted by ∂, maps a k-cell to all its proper faces,
that is all its k′-cells, 0 ⩽ k′ < k, and not only its (k − 1)-cells.

A subcomplex K of C d with Star (K) = K is open, while being closed when
Cl (K) = K. The body of a subcomplex K, i.e. the union of its cells in Rd, is
written ∥K∥.

For any real subset Y of Rd, we denote by C̄ d
k [Y ] the set of k-cells whose

topological closure intersects Y , i.e. C̄ d
k [Y ] = {c ∈ C d

k , c̄ ∩ Y ̸= ∅}, where c̄ =
∥Cl (c) ∥ for any cell c. For any subset Y ⊂ Rd, it is natural to define Star (Y ) :=
C̄ d[Y ]. Last, the set CvxH (Y ) is the convex hull of Y in Rd.

Definition 1 (Full convexity). A non empty subset X ⊂ Zd is digitally k-
convex for 0 ⩽ k ⩽ d whenever

C̄ d
k [X] = C̄ d

k [CvxH (X)]. (1)

Subset X is fully (digitally) convex if it is digitally k-convex for all k, 0 ⩽ k ⩽ d.

The following two characterizations will be useful:

Lemma 1 ([2, Lemma 4]). A digital set X is fully convex iff Star (X) =
Star (CvxH (X)).

Lemma 2 ([3, Theorem 2]). A digital set X is fully convex iff X = FC(X),
with FC(X) := Extr (Skel (Star (CvxH (X)))).

The Skel operator builds the skeleton of a set of cells, which is defined as the
intersection of all cell complexes whose star includes the set of cells. The extreme
operator Extr maps a set of cells to their set of vertices, which is a digital set.
The skeleton can be characterized as follows.

Lemma 3 ([3], Lemma 12). Let us consider Y ⊂ Rd. For any c ∈ C d, c ∈
Skel (Star (Y )) ⇐⇒ ∥c∥ ∩ Y ̸= ∅ and ∥∂c∥ ∩ Y = ∅.

For a cell c ∈ C d, we say that a convex set K is framed within c if K∩∥c∥ ≠ ∅
and K∩∥∂c∥ = ∅. So, considering Lemma 12 in [3] applied to CvxH (X), c ∈ C d

belongs to Skel (Star (CvxH (X))) iff ∥c∥∩CvxH (X) ̸= ∅ and ∥∂c∥∩CvxH (X) =
∅. In other words, a cell c is in the skeleton of a convex hull if and only if the
convex hull is framed within c. Note that if the dimension of c is zero, i.e. c is a
lattice point, then ∂c is empty, so a convex set is framed within a lattice point
if and only if this convex set contains it.

As CvxH (∥∂c∥) is the topological closure of CvxH (∥c∥) = ∥c∥, if K is not
framed within c, then K must either intersect only the boundary of c or c and its
boundary. Moreover if K is closed, then K∩∥c∥ is closed. The framed properties
cannot happen when K is the convex hull of points in Zd and dim c = d. Indeed,
if K is framed within c then obviously K is entirely included in ∥c∥. But this
is impossible since ∥c∥ does not contain any points. So, to have the framed
property, we must have dim c ≤ d− 1.
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3 Segment convexity and generalizations

In the Euclidean space, convexity is defined through inclusion of every straight
line segment joining two points of the set. Minsky and Papert, in their famous
book on perceptrons [10], proposed a digital analogue of segment convexity,
phrased “A [digital] set X fails to be convex if and only if there exists three
[digital] points such that q is in the line segment joining p and r and, p ∈ X,
q /∈ X, r ∈ X.” This definition of digital convexity is unfortunately not at all
equivalent to the digital convexity (see Figure 1), and even less to full convexity.

Fig. 1. Minsky-Papert segment convexity versus S-convexity: (a) MP-convex set X,
since (b) each segment does not touch any other lattice point. But X is not S-convex,
since (c) these segments touch 1-cells and 2-cells that are not in Star (X) (in red).

Therefore we propose the following digital analogues of “segment” convexity,
which are much closer to digital convexity.

Definition 2 (S-convexity and Sk-convexity). We say that a digital set
X ⊂ Zd is S-convex whenever ∀p ∈ X,∀q ∈ X, Star (CvxH ({p, q})) ⊂ Star (X).
Furthermore, for k ≥ 2, the set X is Sk-convex whenever for any k-tuple of
points T of X (not necessarily distinct), we have Star (CvxH (T )) ⊂ Star (X).

Otherwise said for S-convexity (resp. Sk-convexity), any pair of points of X
(resp. any k-tuple of points of X) must be tangent to X in the terminology of
[9]. It is obvious that S2-convexity is the S-convexity and that Sk+1-convexity
implies Sk-convexity. We establish the following results in this section.

Theorem 1. For d ⩾ 1, k ⩾ 2, full convexity implies Sk-convexity.

Proof. Let us consider a fully convex set X. If we consider a k-tuple T in X
then CvxH (T ) ⊂ CvxH (X) because the convex hull operator CvxH () is in-
creasing. But Star () is also an increasing operator hence Star (CvxH (T )) ⊂
Star (CvxH (X)) = Star (X) (the latter equality given by Lemma 1). So X is
Sk-convex. ⊓⊔

Theorem 2. S-convexity is equivalent to full convexity in Z1 and Z2.

Theorem 3. S-convexity is not equivalent to full convexity starting from Z3.

Theorem 4. Sd-convexity is equivalent to full convexity in Zd, for d ⩾ 2.
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Some preliminary lemmas will be used to extract impossible configurations
for the Sk-convexity. With such situations, we are then able to relate full con-
vexity and Sk-convexity. Theorem 3 is proven by a counter-example.

Lemma 4 (Blocking lemma). Let us consider an Sk-convex digital set X ⊂
Zd. Let us consider p ∈ Zd but p ̸∈ X. If Y is a subset of X such that p ̸∈
CvxH (Y ) and such that CvxH (Y ) has at most k − 1 vertices, then there exists
a pointed convex cone C with apex p such that C ∩X = ∅.

Proof. Let us consider an Sk-convex digital set X ⊂ Zd. Let us consider p ∈
Zd \ X, and a subset Y of X such that p ̸∈ CvxH (Y ). Since CvxH (Y ) is a
Euclidean convex set and since p does not belong to it, there exists an hyperplane
Hp separating CvxH (Y ) from p. We denote by H

(−)
p the half-space containing

CvxH (Y ) and by H
(+)
p the half-space containing p. Let us consider any (k− 1)-

tuple T containing the vertices of CvxH (Y ) with repetition if needed. We denote
by Y (−) the pointed convex cone Y (−) = CvxH (T ∪ {p}). Let us denote by Y (+)

the pointed cone obtained by a central symmetry with center p of Y (−). We claim
that Y (+) ∩X = ∅.

Let us hence suppose on the contrary that Y (+)∩X ̸= ∅ and consider a point
x in this intersection. Since T is a (k−1)-tuple in X, the set Tx = T ∪{x} is a k-
tuple in X. Since X is Sk-convex, we have Star (CvxH (Tx)) ⊂ Star (X). But by
the construction with central symmetry with center p, we have p ∈ CvxH (Tx).
So p is a point in Star (X), which implies p ∈ X. This is a contradiction. ⊓⊔

For any two points u, v ∈ Zd, let us denote by (u; v) the line passing through u
and v. Let us denote by (∞; v)u the semi-line in (u; v) containing u and stopping
at v. The semi-line (v;∞)u is an infinite semi-line in (u; v) containing v but no
other point of (∞; v)u.

Lemma 5 (Line Blocking lemma). Let us consider an Sk-convex digital set
X ⊂ Zd. Let us consider p ∈ Zd, p ̸∈ X. For any x ∈ X, (p;∞)x ∩X = ∅.

Proof. Let us consider an Sk-convex digital set X ⊂ Zd. Let us consider p ∈
Zd, p ̸∈ X. Let us consider the (k − 1)-tuple Y by using x, k − 1 times. Then
applying Lemma 4, we get a pointed cone C, which is in fact (p;∞)x, whose
intersection with X is empty. ⊓⊔

Lemma 6 (Grid lemma). Let us consider a finite Sk-convex digital set X ⊂
Zd with k ⩾ 2. Let us denote by Z[ej ] any line in Zd directed by the canonical
basis vector ej. Then, Z[ej ] ∩X is connected.

Proof. By using Lemma 5, we known that if we can find a point p outside X
then a semi-line will be blocked for X. The same is true for any 1d slice of X, a
1d slice being Z[ej ] ∩X. But since X is finite, there always exists a point p in
Z[ej ] which is outside X. We consider a point p such that one of its neighbor in
Z[ej ] is in X. There are two possible extreme choices for p called p(−) and p(+)

and so two neighbors x(−) and x(+). We claim that Z[ej ]∩X = [x(−);x(+)]∩Zd.
Indeed, if a lattice point q is missing in this interval then it belongs to the convex
hull of a k ≥ 2 tuple in X. Hence it must belong to X. ⊓⊔
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Lemma 7 (Star lemma). Let us consider a digital set X ⊂ Zd. If X is Sd-
convex then ∀c ∈ C d, dim c > 0, if CvxH (X) is framed within c then ∃e ∈
∂c, dim e = 0, e ∈ X.

Proof. Let us consider an Sd-convex digital set X ⊂ Zd. Let us consider c ∈
C d, dim c > 0, K = ∥c∥ ∩ CvxH (X) ̸= ∅. Suppose that CvxH (X) is framed
within ∥c∥. In other words, since CvxH (X) is convex and closed, we have K ⊊
∥c∥. The framed property implies that there exists supporting hyperplanes of
CvxH (X) separating ∥c∥ from ∥∂c∥, but touching ∂CvxH (X) too. We can pick
one of these supporting hyperplanes that contains a face of ∂CvxH (X): it has
an affine dimension 0 ≤ k ≤ d − 1. This convex face can be decomposed into a
set of k-simplexes {Si}. At least one of them, say Sic , intersects ∥c∥, otherwise
K cannot be a subset of ∥c∥. So c ∈ Star (Sic). Now Sic is the convex hull of a
k+1-tuple of points of X, with k+1 ⩽ d. By definition of the Sd-convexity, we
must have c ∈ Star (X). But X is a set of points so at least one of the vertices
of c must be in X. We have just found some cell e ∈ ∂c, dim e = 0, e ∈ X.

If we assume now that CvxH (X) is not framed within c, we have both
CvxH (X) ∩ ∥c∥ ̸= ∅ and CvxH (X) ∩ ∥∂c∥ ̸= ∅. So, we can consider any cell
f in ∥∂c∥. If CvxH (X) is framed within f , we got a 0-dimensional cell e, oth-
erwise, we choose a lower dimensional cell in the boundary of f . At each step
the dimension decreases. So at the end, either we find a 0-dimensional cell e
belonging to CvxH (X) or we find a cell within which CvxH (X) is framed, and
we also obtain a 0-dimensional cell e. ⊓⊔

Lemma 8. Let us consider a digital set X ⊂ Zd. If X is Sd-convex then
FC(X) = CvxH (X) ∩ Zd.

Proof. Let us consider an Sd-convex digital set X ⊂ Zd. Let us consider a cell c in
Skel (Star (CvxH (X))). Suppose that dim c > 0. Using Lemma 7 since X is Sd-
convex, ∃e ∈ ∂c, dim e = 0, e ∈ X. This implies that Star (c) ⊂ Star (e). Hence,
c cannot belong to Skel (Star (CvxH (X))), but e does. So we got a contradiction
with ∥∂c∥ ∩ CvxH (X) = ∅. It follows that c must be a 0-dimensional cell, that
is a point. This implies that the Skeleton of CvxH (X) only contains points
such that Extr (Skel (Star (CvxH (X)))) = Skel (Star (CvxH (X))). But since we
only have 0-dimensional cells in the skeleton, we get Skel (Star (CvxH (X))) =
CvxH (X) ∩ Zd. We conclude that FC(X) = CvxH (X) ∩ Zd. ⊓⊔

Proof (Theorem 2). Using Theorem 1, we only study the case of an S-convex
set.

Let us consider an S-convex set X in Z1. Using Lemma 6, we have that X
must be an interval of points. Hence X is fully convex because Star (CvxH (X)) =
Star (X).

Let us consider an S-convex set X in Z2. Let us suppose that there exists a
lattice point z in

(
CvxH (X) ∩ Z2

)
\X. We first remark that z is strictly interior

to CvxH (X). Indeed, z cannot be a vertex of the convex hull since the vertices
are always in X. Furthermore z cannot be on an edge of CvxH (X) because
Lemma 5 would imply a contradiction. We consider the set L(c) of 1-dimensional
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A

B

C

x y

z

This is piece of the standard digital plane P = {(x, y, z) ∈
Z3, 0 ⩽ x + y + 2z < 4}. The set X, represented as black
disks, is a subset of P . The set Y is the union of X with the
point M = (1, 1,−1) represented as a white disk. We have
A = (0, 0, 0), B = (4, 2,−3), C = (−1, 1, 0). All four points
A,B,C,M have remainder 0 in the digital plane. One can
check that M = 1

3
(A + B + C), hence M ∈ CvxH (X). But

M does not belong to any straight segment between any pair
of points of X.

Fig. 2. Counter-example to S2-convexity implies full convexity: set Y is S2-convex and
fully convex, while X is S2-convex but not fully convex (and not digitally 0-convex).

cells c ∈ C d in Star (z). Because z is strictly interior to CvxH (X), we must have
L(c) ∩ CvxH (X) ̸= ∅. So we consider a 1-dimensional cell c in L(c) such that
∥c∥ ∩ CvxH (X) ̸= ∅. Using Lemma 7, we get a point e ∈ ∂c with e ∈ X. Let
us consider the 1 dimensional cell cop which is on the same axis as z and e but
which does not have e on its boundary. We note that cop = {f, z}. But, f ̸∈ X,
because of Lemma 6. So we can move on this axis in the direction of f until the
0-cell on the boundary of the 1-cell is not in CvxH (X). Let us call clim this last
1-dimensional cell. We have that ∥clim∥ ∩ CvxH (X) ̸= ∅ and no points in ∂clim
are in X which is in contradiction with Lemma 7. So,

(
CvxH (X) ∩ Z2

)
\X = ∅

and it follows that X = CvxH (X) ∩ Z2.
We now use Lemma 8 to get that FC(X) = CvxH (X) ∩ Z2.
We have obtained the equality FC(X) = CvxH (X)∩Z2 = X which completes

the proof that X is indeed a fully convex set in Z2. ⊓⊔

Proof (Theorem 3). A counter-example is given on Fig. 2. We should note that
large random constructions of S2-convex sets by simulation did not lead to any
counter-examples. In fact, problematic examples correspond to sets for which
there exists an integer point in the relative interior of a maximal face which
does not belong to any segments of the face, and are thus very unlikely to be
generated randomly. ⊓⊔

The main result in dimension 2 for S-convexity is that for an S-convex set X,
we necessarily have X = CvxH (X) ∩ Z2. As Theorem 3 states it, this property
failed to be true in higher dimension. This explains why we must rely on the
more restrictive Sd-convexity when increasing the dimension.

Proof (Theorem 4). Let us consider an Sd-convex set X. Its convex hull CvxH (X)
can be partitioned into a set of d-dimensional simplices Ci in Zd for which
we can rely on the Sd-convexity property of X. Indeed, if there exists a point
z ∈

(
CvxH (X) ∩ Zd

)
\ X, then ∃iz such that z ∈ Ciz . Since X is Sd-convex,

this means that z ∈ Star (CvxH (Ciz )) ⊂ Star (X). So since z is a point, this
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implies that z is in X which is a contradiction. So,
(
CvxH (X) ∩ Zd

)
\ X = ∅,

otherwise said CvxH (X)∩Zd = X, that is X is 0-convex. But applying Lemma
8, we get that FC(X) = CvxH (X) ∩ Zd too. Gathering the two equalities, we
obtain FC(X) = X, which means that X is fully convex. ⊓⊔

4 Projection convexity

We here study the stability of fully convex sets with respect to orthogonal pro-
jections along axes in Rd. We denote by πj the orthogonal projector associated
to the j-th axis, which consists in omitting the j-th coordinates for all points
of Zd. By direct extension, those projectors are defined for cells in C d. πj are
called axis projectors. Those projectors share the property that the image of a
cell c ∈ C d is a cell in C d−1 and those projections are the only projections for
which this property is true. Moreover, the image of a point in Zd by any axis
projector is a point in Zd−1. Let us define a convexity by projections as follows.

Definition 3 (P -convexity). Let X ⊂ Zd be a digital set. The set X is P -
convex if and only if X is digitally 0-convex (i.e. CvxH (X)∩Zd = X) and when
d > 1, for any j, 1 ⩽ j ⩽ d, πj(X) is P -convex in Zd−1.

Quite surprisingly, we have the equivalence of P -convexity with full convexity.

Theorem 5. For arbitrary dimension d ⩾ 1, for any X ⊂ Zd, X is fully convex
if and only if X is P -convex.

Proof. The fact that a fully convex X is also P -convex directly follows from (i)
fully convex sets are in particular digitally 0-convex, (ii) projection πj(X) are
fully convex in Zd−1 as shown in [3, Lemma 23].

When d = 1, 0-convexity is equivalent to full convexity (consequence of [9,
Lemma 4] with d = 1), so P -convexity implies full convexity for this dimension.
Let us now show that this implication holds for d > 1.

Suppose that X ⊂ Zd is P -convex but not fully convex. Since X is 0-convex by
definition, we know that X = CvxH (X)∩Zd. So, any 0-dimensional cell of X is
in the skeleton Skel (Star (CvxH (X))) and CvxH (X) does not contain any other
points. So since the fact that X is not fully convex implies that X ̸= FC(X),
there exists some cell c in Skel (Star (CvxH (X))) with dim c > 0. Indeed, the
extreme operator only add points for cells of strictly positive dimension. We can
characterize c by the framed property: CvxH (X) ∩ ∥c∥ ̸= ∅ and CvxH (X) ∩
∥∂c∥ = ∅.

Let y be some point of CvxH (X)∩∥c∥, which is also not in X since it is not
a lattice point. Being in CvxH (X), by Carathéodory’s convexity theorem, there
exists at most d + 1 extreme points v0, v1, . . . , vd of CvxH (X) such that y is a
convex linear combination of these points. We thus have y =

∑d
i=0 λivi, with∑d

i=0 λi = 1 and ∀i, 0 ⩽ i ⩽ d, λi ≥ 0. Being extreme points of CvxH (X), every
vi is a lattice point in X.
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Let k := dim c. There exists k different directions J := (ji)i=1,...,k such that
dim(πji(c)) = k − 1. Let πJ be the composition of the projections πj1 , . . . , πjk

(the order is not important since these operators commute). It follows that πJ(c)
is a lattice point, say z. Since y ∈ c, we have also z = πJ(y). It follows that:

z = πJ

(
d∑

i=0

λivi

)
=

d∑
i=0

λi(πJ(vi)). (by linearity of πj)

Since every vi ∈ X, we have shown that z ∈ CvxH (πJ(X)) and z ∈ Zd−k. Since
X is P-convex, its projection πJ(X) is 0-convex, so CvxH (πJ(X)) ∩ Zd−k =
πJ(X) and z ∈ πJ(X).

The last assertion means that there exist a lattice point x ∈ X, such that
z = πJ(x). Let C := π−1

J (z) be the affine k-dimensional space containing z. It
contains in particular c, its boundary ∂c, the point y and the lattice point x.
We have y ∈ c while x cannot be in c since it is a lattice point. Furthermore
CvxH (X) ∩ ∥∂c∥ = ∅ implies also x /∈ ∂c (because x ∈ X). Now y ∈ CvxH (X)
by definition, x ∈ X ⊂ CvxH (X), so the straight segment [y;x] must be included
in CvxH (X). It also included in the k-dimensional space C so it is a connected
path from the interior of cell c to the exterior of c in C: it must cross ∂c at some
point x′. By convexity we have x′ ∈ [y;x] = CvxH ({x, y}) ⊂ CvxH (X). But we
have also x′ ∈ ∂c and CvxH (X) ∩ ∥∂c∥ = ∅. This is a contradiction.

Hence X = FC(X) which is equivalent to X fully convex. ⊓⊔

5 Applications

We present here two quite immediate applications of the previous characteriza-
tion of fully convex sets.

5.1 New fully convex digital sets

Proposition 1 Let A be a digital set with bounding box defined by a lowest point
p and a highest point q, with ∀i, 1 ⩽ i ⩽ d, |qi − pi| ⩽ 1. Then A is fully convex.

Proof. If A is empty then the conclusion holds. In dimension 1, it is clear that
any subset of the digital set {x, x + 1} is 0-convex hence P -convex. Assuming
now that the property holds for dimension d − 1, let us prove it for A ⊂ Zd.
Note first that any subset of the hypercube H defined by p and q is digitally
0-convex, since any vertex of CvxH (A) must belong to A since it is a vertex of
H too. Each projection πj(A) is also a non-empty subset of a d − 1-hypercube
πj(H), and is thus P -convex by induction hypothesis. The conclusion follows
from the equivalence of P -convexity with full convexity (Theorem 5). ⊓⊔

A digital ball of Zd is the intersection of any Euclidean d-dimensional ball
with Zd. Note that the center of the ball may by any Euclidean point of Rd and
the radius may be any real non negative value.



10 F. Feschet and J.-O. Lachaud

Proposition 2 Any digital ball of Zd is fully convex.

Proof. We show that this is true by induction on the dimension d. For d = 1,
full convexity is equivalent to 0-convexity, and a 1-dimensional digital ball is
0-convex. Let us assume that digital balls are fully convex for dimension d− 1,
d ≥ 2, and let us prove that this assertion is true for dimension d.

By Theorem 5, it is equivalent to show that d-dimensional digital balls are
P -convex. Let X be some digital ball of center c ∈ Rd and radius r, i.e. X =
Br(c)∩Zd. First of all, X is 0-convex since it is the intersection of a real convex
set with the grid Zd. We have to show that, for any axis direction j, 1 ⩽ j ⩽ d,
πj(X) is P -convex.

We write the proof for j = d for simplicity of writings, but the proof is the
same for the other directions. The main argument is that the projection of a
digital ball is itself a d− 1-digital ball but possibly with a slightly lower radius.

For x ∈ X, we have ∥πd(x)−πd(c)∥2 = ∥x−c∥2−|xd−cd|2 ≤ r2−|xd−cd|2,
where xd and cd are the d-th coordinate of their respective point. It is obvious
that, for any z ∈ Z, |z − cd| ≥ |cd − ⌊cd⌉ | =: α, where ⌊·⌉ is the round operator.
It follows that ∥πd(x) − πd(c)∥2 ≤ r2 − α2 =: ρ2. We have just shown that
πd(X) ⊂ Bρ(πd(c)) ∩ Zd−1.

Reciprocally, let us now pick a point y ∈ Bρ(πd(c)) ∩ Zd−1. It follows that
∥y − πd(c)∥2 ≤ r2 − α2. Let us build a d-dimensional lattice point z as z =
(y1, . . . , yd−1, ⌊cd⌉). We have:

∥z− c∥2 = ∥y − πd(c)∥2 + | ⌊cd⌉ − cd|2 ⩽ r2 − α2 + α2 = r2.

This proves that z ∈ X. Since πd(z) = y, it holds that y ∈ πd(X). It follows
that Bρ(πd(c)) ∩ Zd−1 ⊂ πd(X).

So πd(x) is a d− 1-dimensional digital ball, hence is fully convex or, equiva-
lently, P -convex. Since all projections are P -convex, it holds that X is P -convex
or, equivalently, fully convex. ⊓⊔

Note that the argument does not work for an arbitrary ellipsoid since some
projections of digital ellipsoids might not be digital ellipsoids: this is due to
possible missing points when the ellipsoid is too thin.

5.2 A progressive measure for full convexity

Sometimes it is useful to quantify a property over a set in a progressive man-
ner. For instance there exists measures of circularity, convexity, straightness,
disconnectedness, and so on (e.g. [15,13,14]). We would like here to define a full
convexity measure over a digital set, that has value exactly 1 for fully convex
sets, while decreasing to zero as the digital set looks less and less like a fully
convex set.

Let Md(A) be any d-dimensional digital convexity measure of digital set A.
A choice could be for instance for finite sets:

Md(A) :=
# (A)

# (CvxH (A) ∩ Zd)
, Md(∅) = 1. (2)
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The full convexity measure MF
d for A ⊂ Zd, A finite, is then:

MF
1 (A) :=M1(A) for d = 1, (3)

MF
d (A) :=Md(A)

d∏
k=1

MF
d−1(πk(A)) for d > 1. (4)

It coincides with the digital convexity measure in dimension 1, but may differ
starting from dimension 2.

Theorem 6. Let A ⊂ Zd finite. Then MF
d (A) = 1 if and only if A is fully

convex and 0 < MF
d (A) < 1 otherwise. Besides MF

d (A) ⩽ Md(A) in all cases.

Proof. Immediate from the equivalence of P -convexity with full convexity. ⊓⊔

Figure 3 illustrates the links and the differences between the two convexity
measures Md and MF

d on simple 2D examples. As one can see, the usual convexity
measure may not detect disconnectedness, is sensitive to specific alignments of
pixels, while full convexity is globally more stable to perturbation and is never
1 when sets are disconnected.

A

Md(A) 0.360 0.850 0.656 0.724 0.727 1.000 1.000 1.000 1.000 1.000 1.000 0.950
MF

d (A) 0.184 0.850 0.563 0.634 0.623 1.000 0.750 0.457 0.595 0.857 0.857 0.814

A

Md(A) 0.500 1.000 0.667 0.500 0.500 1.000 0.667 1.000 0.667 0.800 0.667 1.000
MF

d (A) 0.250 0.500 0.222 0.250 0.200 0.381 0.296 0.533 0.296 0.427 0.444 1.000

Fig. 3. Common points and differences of convexity measure Md and full convexity
measure MF

d on small 2D digital sets.

6 Conclusion and perspectives

We have presented two original characterizations of full convexity. The first one
gives a nice analogue of the “segment inclusion” definition of convexity with full
convexity in dimension 1 and 2, and it shows also that, in higher dimensional
spaces, additional continuity constraints are required. The second characteriza-
tion tells that full convexity requires the digital convexity of the set and all of
its shadows along axes.

Both characterizations shed new light on what is really full convexity. They
may provide alternative algorithms to check full convexity, which may have bet-
ter time complexity. They may help deciding if some digital sets are fully convex,
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as we show here for digital balls and hypercube subsets. They enable the defi-
nition of new measures for digital sets, with a stronger power of categorization.
Finally, the characterization of full convexity through projections can be of in-
terest for discrete tomography, as it induces connectedness in a natural way.
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