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Abstract

In a recent work, full convexity has been proposed as an alternative definition of digital convex-
ity. It solves many problems related to its usual definitions, for instance: fully convex sets are
digitally convex in the usual sense, but are also connected and simply connected. However, full con-
vexity is not a monotone property, hence intersections of fully convex sets may be neither fully
convex nor connected. This defect might forbid digital polyhedral models with fully convex faces
and edges. This can be detrimental since classical standard and naive planes are fully convex. In
this paper we study several methods that builds a fully convex set from a digital set. One is
particularly appealing and is based on an iterative process: this envelope operator solves in arbi-
trary dimension the problem of extending a digital set into a fully convex set, while leaving fully
convex sets invariant. This extension naturally leads to digital polyhedra whose cells are fully con-
vex. Then a relative envelope operator is proposed, which can be used to force digital planarity
of fully convex sets. We provide experiments showing that our method produces coherent polyhe-
dral models for any polyhedron in arbitrary dimension. Finally we study how we can speed up full
convexity checks and envelope operations, with a worst-case complexity lowered by a factor 2d in Zd.
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1 Introduction

Convexity is a classical property in various
domains of mathematics and computer science. It
allows for instance guarantees for optimization,
containment property via its separability with
hyperplanes, and many convergence results in real

This work has been partly funded by CoMeDiC ANR-15-CE40-
0006 research grant.

or discrete analysis need convexity assumptions.
While it has been primarily developed in Rd, sev-
eral extensions have been proposed in the past.
Two main paths are possible for extending convex-
ity: either going more abstract to adapt convexity
to generic spaces or building more specialized ver-
sions for dedicated spaces like the digital space
Zd for instance. Most general extensions of con-
vexity rely on hull systems [Lau06], K-convexity
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and simplicial convexity [Lli02] or closure (hull)
operators [And06]. Those general extensions do
not necessarily embed a geometric vision of con-
vexity, so convex sets do not have a geometric
structure in the same veins as in Rd. More resem-
bling extensions rely on anti-matroids notably
with the anti-exchange property [RS03] or cel-
lular extensions based on discrete hyperplanes
[Web01, RS03]. They induce spaces of convex sets
with more geometric interpretations, but also fail
to be connected in some situations. Several exten-
sions have also been proposed in the optimization
community using convexity and digital convexity
as certificates of optimality [MS01]. For digital
spaces Zd, digital convexity was first defined as
the intersection of real convex sets of Rd with Zd

(e.g. see survey [Ron89]). Many works have then
tried to enforce the connectedness of such sets, for
instance by relying on digital lines [KR82b, Eck01]
or extensions of digital functions [Kis04, Kis22].
Most works are limited to 2D, and 3D extensions
do not solve all geometric issues [KR82a].

This paper considers the recently introduced
notion of full convexity [Lac21, Lac22]. It extends
digital convex sets while enforcing connectedness
of fully convex sets. This notion is also compu-
tational in the sense that verifying full convexity
is an easy task. Furthermore classical standard
and naive planes are fully convex, so this con-
vexity is appealing for building polyhedral models
in any dimensions. However, since intersections
of fully convex sets are not always fully convex,
full convexity cannot be used directly for build-
ing faces and edges of polyhedra. Indeed the full
convexity does not verify the monotonicity prop-
erty of classical hull operators and thus fully
convex hull is not a properly defined hull opera-
tor. This is a problem if we wish to build digital
polyhedra in arbitrary dimension. In 3D, grace-
ful lines and planes have been proposed in [BB02]
to define edges consistent with triangular faces.
It permits to fix varying arithmetical thickness
between interior and boundary of digital triangles
by construction but it is limited to 3D.

Our objective is to define polyhedral mod-
els in digital space Zd which are based on full
convexity. Our proposal lets us freely choose the
thickness of digital faces, is canonic in arbitrary
dimension, and benefits from the nice properties
of fully convex sets. Indeed, naive, standard or
even thicker pieces of arithmetical planes can be

reconstructed in the proposed unified framework.
In the course of this construction, we define a
fully convex envelope operator, which guarantees
the properties of our new polyhedral models. This
paper is an extension of [FL22], and adds several
construction of fully convex sets, new properties
and characterizations, and several algorithms and
data structures to check full convexity or compute
fully convex enveloppe, with significant speed-up.

We start by defining the fully convex enve-
lope in Section 2. We propose a pre-hull operator
without the monotonicity property, which builds
a fully convex set containing any input digital
sets. Our process is iterative, fully parallel at each
iteration and ends after a finite number of iter-
ations. It solely uses classical operators in the
cubical complex C d associated to Zd. Our con-
struction lets fully convex sets to be invariant
sets. We also characterize the operator for gen-
eral real sets. We then adapt this operation, in
Section 3, to define a fully convex envelope rela-
tive to another fully convex set. Since thick enough
digital planes are known to be fully convex, we
can define fully convex subsets of digital planes in
arbitrary dimension. We then study several mod-
els for building fully convex envelope and compare
their behaviors in Section 4. The simultaneous
use of a convex envelope and its relative exten-
sion are then used to build edges and faces for
meshes with planar faces or meshes with non pla-
nar faces in Section 5. Experiments show that
the induced polyhedral models are visually appeal-
ing and preserve the connectivity graphs between
faces and edges of original models. Then we focus
on implementation details in Section 6 to present
an efficient implementation of the operators pre-
sented in the paper, all of them publicly available
in an open-source library. We provide a discussion
about efficient data structure and efficient com-
putations to reduce worst-case complexity and to
obtain important speed-up comparatively to the
previous implementation described in [Lac22]. We
then conclude the paper in Section 7, and present
open questions for extending the present proposal.
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2 Full convexity and fully
convex envelope

2.1 Definitions

Cubical cell complex.

We consider the (cubical) cell complex C d induced
by the lattice Zd, such that its 0-cells are the
points of Zd, its 1-cells are the open unit seg-
ments joining two 0-cells at distance 1, its 2-cells
are the open unit squares formed by these seg-
ments, . . . , and its d-cells are the d-dimensional
unit hypercubes with vertices in Zd. We denote by
C d
k the set of its k-cells. We call complex/subcom-

plex any subset of cells of C d , e.g. any single cell
is a subcomplex. A digital set is a subset of Zd.

The (topological) boundary ∂Y of a subset Y
of Rd is the set of points in its closure but not in
its interior. The star of a cell σ in C d , denoted by
Star (σ), is the set of cells of C d whose boundary
contains σ and it contains the cell σ itself. The
closure Cl (σ) of σ contains σ and all the cells in
its boundary. In this paper, the boundary operator
maps a k-cell to all its proper faces, that is k′-cells,
k′ < k and not only (k − 1)-cells.

Lemma 1. c′ ∈ ∂c⇐⇒ Star (c′) ⊋ Star (c).

We extend these definitions to any subcomplex
K of C d by taking unions:

Star (K) :=
⋃
σ∈K

Star (σ) ,

Cl (K) :=
⋃
σ∈K

Cl (σ) .

In combinatorial topology, a subcomplex K
with Star (K) = K is open, while being closed
when Cl (K) = K. The body of a subcomplex K,
i.e. the union of its cells in Rd, is written ∥K∥. We
denote by Extr (K) := Cl (K) ∩ Zd the extreme
0−cells identified to points in Zd.

Intersection complex.

If Y is any subset of the Euclidean space Rd,
we denote by C d

k [Y ] the set of k-cells whose
topological closure intersects Y , i.e.

C d
k [Y ] := {c ∈ C d

k , c ∩ Y ̸= ∅}. (1)

Note that c = ∥Cl (c)∥ for any cell c. The complex
that is the union of every C d

k [Y ], 0 ⩽ k ⩽ d, is
called the intersection (cubical) complex of Y and
is denoted by C d[Y ].

It is worth to note that, for any complex K,
Star (K) = C d[∥K∥]. Hence, for any subset Y ⊂
Rd, it is natural to define Star (Y ) := C d[Y ],
which coincides with the standard definition of
star on subsets of C d or Zd. It should be noted
that for a digital set X ⊂ Zd, we identify its points
to the 0-dimensional cells of its star. So an equal-
ity of type K = X where K is a complex and X
is a digital set means that the complex K only
contains the 0-dimensional cells of Star (X).

Star () inverse.

There are at least two natural ways of defining
an inverse operation to the Star () operator. We
here present those two possibilities. We always call
Skeleton or Skel () an inverse operator to Star ().

We can define a kind of inverse operation to the
star using the dimensions of cells. For any complex
K ⊂ C d , let:

• Skel0 (K) := {c ∈ C d
0 ,Star (c) ⊂ K}

• ∀k = 1, . . . , d, Skelk (K) := Skelk−1 (K) ∪
{c ∈ C d

k \ Star (Skelk−1 (K)) ,Star (c) ⊂ K}.

Then the (recursive) skeleton Skel (K)R of the
complexK is equal to Skeld (K). The next Lemma
is immediate from the definition:

Lemma 2.

Skel (K)R =
⋃

0⩽k⩽d

{ c ∈ C d
k ,Star (c) ⊂ K and

∀c′ ∈ K \ {c},Star (c) ̸⊂ Star (c′)} .

This notion of skeleton is a right inverse to
Star (·) for open complexes:

Lemma 3. For any complex K, K open ⇐⇒
Star (Skel (K)R) = K.

Proof Since K is open, we have K = Star (K). So,
K =

⋃
c∈K Star (c). To remove redundant cells in

Star (), we denote by R(K) the set {c ∈ K / ∀c′ ∈
K \ {c}, Star (c) ̸⊂ Star

(
c′
)
}. We have K =⋃

c∈R(K) Star (c) which is equal to Star
(
Skel (K)R

)
,

by Lemma 2. □
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We can also define a kind of inverse operation
to the star sandwiching K between another set K ′

and Star (K ′). For any complex K ⊂ C d , let:

Skel (K)E :=
⋂

K′⊂K⊂Star(K′)

K ′.

This (extended) version of the skeleton also
provides characterizations for open sets mainly.

Lemma 4. For any complex K, K ⊆
Star (Skel (K)E) with equality when K is open
and ⊊ otherwise. We also have Skel (K)E =
Skel (Star (K))E.

Lemma 5. For any open complex K,
Star (Skel (K)E) = K.

Proof (⊃) K ⊂ Star
(
Skel (K)E

)
by construction.

(⊂) Skel (K)E ⊂ K because K ⊂ Star (K). Star ()
being increasing, Star

(
Skel (K)E

)
⊂ Star (K) = K

since K is open. □

We now provide a proof that this second notion
of skeleton can be rephrased in the general context
of extreme cells [And06] in closure space. Let us
recall that a set function τ(.) is a closure operator
if it satisfies: (i) A ∈ τ(A), (ii) if A ⊂ B ⇒ τ(A) ⊂
τ(B) and (iii) τ(τ(A)) = τ(A). We indeed notice
that Star (.) is a closure operator on the sets of
cells.

Lemma 6. For any complex K, Skel (K)E is the
set of extreme cells of K with respect to Star (.).

Proof Following [And06], the set of extreme cells of
any complex K ⊂ C d is

E (K) := {p ∈ K, p ̸∈ Star (K \ {p})}.

We can remark that p ∈ E (K) ⇐⇒ ∀c ∈ K \
{p}, p ̸∈ Star (c). Indeed, p ∈ E (K) ⇐⇒ p ∈
K and p ̸∈ Star (K \ {p}). But since Star (K \ {p}) =
∪c∈K\{p}Star (c), and since p does not belong to the
union of all Star (), p is not in any Star ().

We can now prove that Skel (K)E is E (K).
(⊃) Let us consider a complex K′ ⊂ K ⊂

Star
(
K′). Then Star

(
K′) = Star (K), such that

Star (p) ⊂ Star
(
K′). Hence there exists a collection

of cells cq ∈ K′ such that Star (p) ⊂
⋃

q Star (cq) and
for each q, Star (cq) ∩ Star (p) ̸= ∅. But the star of cq
and p intersect if and only if either cq = p or p ∈ ∂cq
or cq ∈ ∂p. In the first case, we have p ∈ K′. If the

third case exists then we have found some c ∈ K \ {p}
with p ∈ Star (c). This is a contradiction. If only the
second case exists then by using Lemma 1, we obtain
a contradiction since in this case the set

⋃
q Star (cq)

is strictly included in Star (p). So, we necessarily have
p ∈ K′ for any such K′. This implies p ∈ Skel (K)E .

(⊂) If there exists c ∈ K \ {p}, p ∈ Star (c)
then p ̸∈ Skel (K)E hence p ∈ E (K). □

We can remark that, by definition of extreme
cells, any point of a digital set X is an extreme cell
of Star (X), because 0-dimensional cells cannot be
built using Star (.) on other cells than themselves.
We can further see that E (Star (X)) is exactly X
viewed as a set of 0-dimensional cells. Hence we
get the following Lemma,

Lemma 7. For any digital set X we have
Skel (Star (X))E = X.

Relations between skeletons.

We know study the relations between the two
previously defined notions of skeleton.

Lemma 8. For any complex K, let us denote by
K̊ the largest open complex included in K. Then,

Skel (K)R = Skel
(
K̊
)
E
.

Lemma 9. The two Skel () definitions coincide
on open complexes.

In other words, on an open complex, the set of
its extreme points and its skeleton coincide for
the two definitions. They differ for non open com-
plexes. Hence, in the sequel, we define the skeleton
of K as

Skel (K) :=
⋂

K′⊂K⊂Star(K′)

K ′. (2)

We can thus summarize why, for open complexes,
Skel () can be considered as a right inverse of
Star ().

Lemma 10. For any complex K, K ⊂
Star (Skel (K)).

Lemma 11. For any open complex K,
Star (Skel (K)) = K.
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Skeleton of Star for real sets.

We provide the following characterization for the
Skeleton of the Star of real sets.

Lemma 12. Let us consider Y ⊂ Rd.
For any c ∈ C d , c ∈ Skel (Star (Y ))⇔ ∥c∥∩Y ̸= ∅
and ∥∂c∥ ∩ Y = ∅.

Proof
(⇒) Let c ∈ C d with c ∈ Skel (Star (Y )). Since
Skel (Star (Y )) ⊂ Star (Y ), we have c ∩ Y ̸= ∅. Sup-
pose that ∥c∥ ∩ Y = ∅ then there exists d ∈ ∂c such
that ∥d∥ ∩ Y ̸= ∅. Hence d ∈ Star (Y ). Moreover, the
dimension of d is strictly lower than the dimension of
c such that Star (c) ⊂ Star (d).

Now, for any e ∈ C d , e ∈ Star (d) ⇒ d ∈ Cl (e).
Since ∥d∥ ∩ Y ̸= ∅, we get that e ∩ Y ̸= ∅ such that
e ∈ Star (Y ). So Star (c) ⊂ Star (d) ⊂ Star (Y ). Hence
c ̸∈ Skel (Star (Y )), which is a contradiction. We can
then conclude that ∥c∥∩Y ̸= ∅ and that ∥∂c∥∩Y = ∅.
(⇐) Let c ∈ C d with ∥c∥ ∩ Y ̸= ∅ and ∥∂c∥ ∩ Y = ∅.
Then, c is in Star (Y ). Now Star (c) ⊂ Star (e) with
e ∈ C d implies that e ∈ ∂c. Hence, c ̸∈ Skel (Star (Y ))
implies that there exists e ∈ ∂c with e ∈ Star (Y ).
So e ∩ Y ̸= ∅. Considering such a cell e with minimal
dimension, this implies that ∥e∥ ∩ Y ̸= ∅ which is a
contradiction since ∥∂c∥ ∩ Y = ∅. □

In other words, a cell belongs to the Skeleton of the
Star of a real set if and only if the cell intersects
the set but the cell boundary does not intersect
the set.

2.2 Full convexity

For a set A ⊂ Rd, its convex hull CvxH (A) is the
intersection of all convex sets that contains A.

Definition 1 (Full convexity [Lac21, Lac22]). A
digital set X ⊂ Zd is digitally k-convex for 0 ⩽
k ⩽ d whenever C d

k [X] = C d
k [CvxH (X)]. The set

X is fully (digitally) convex if it is digitally k-
convex for all k, 0 ⩽ k ⩽ d.

The following characterization will be useful:

Lemma 13. A digital set X is fully convex iff
Star (X) = Star (CvxH (X)).

Proof Indeed, the set X is fully convex iff

∀k, 0 ⩽ k ⩽ d,C d
k [X] = C d

k [CvxH (X)]

⇔ C d[X] = C d[CvxH (X)]

⇔ Star (X) = Star (CvxH (X)) ,

by definition of Star (·). □

2.3 Fully convex envelope

Convex hull is one of the most fundamental tool in
continuous geometry. We wish to design a digital
analogue to the convex hull. The question is then
how to build a fully convex set from an arbitrary
digital subset of Zd. For instance can we build this
fully convex envelope with intersections of fully
convex set? We do have this rather straightforward
property:

Lemma 14. If A and B are digitally 0-convex,
then A ∩B is digitally 0-convex.

Proof
Since CvxH (·) is increasing, we have CvxH (A ∩B) ∩
Zd ⊂ CvxH (A) ∩ CvxH (B) ∩ Zd. Then using that
A and B are digitally 0-convex, we get CvxH (A) ∩
CvxH (B) ∩ Zd = A ∩B. □

However, intersections of fully convex sets are
generally not fully convex. As a very simple exam-
ple, just pick A = {(0, 0), (1, 1), (2, 1)} and B =
{(0, 0), (1, 0), (2, 1)}, which are both fully convex.
Then the set A ∩ B = {(0, 0), (2, 1)} is not fully
convex, not even connected as seen below.

A B A ∩B

Therefore, we propose another way to build
a fully convex set from an arbitrary digital set,
which uses the cells intersected by the convex
hull of this set, and which is defined through an
iterative process.

Each iteration composes these operations, for
X ⊂ Rd:

FC(X) := Extr (Skel (Star (CvxH (X))))

First the Euclidean convex hull of the set is com-
puted, letting Y = CvxH (X), then its covering
Star (Y ) by cells of the cellular grid is determined.
The skeleton of these cells is their smallest sub-
set such that Star (Skel (Star (Y )))⊃Y . Then for a
complex K, Extr (K) := ∥Cl (K)∥∩C d

0 , i.e. all the
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vertices of the cells of K. So finally FC(X) is com-
posed of the grid vertices of the skeleton cells. The
last operation implies that FC(X) ⊂ Zd. Refer to
Figure 1 for an illustration of FC operation and
fully convex envelope computation.

Definition 2 (Fully convex envelope). For any
integer n ⩾ 0, the n-th convex envelope of X ⊂ Rd

is the n times composition of operation FC.

FCn(X) := FC ◦ · · · ◦ FC︸ ︷︷ ︸
n times

(X).

The fully convex envelope of X is the limit of
FCn(X) when n→∞:

FC∗(X) := lim
n→∞

FCn(X).

We have to show that this process has a limit
for every subset X.

Theorem 1. For any finite digital set X ⊂
Zd, there exists a finite n such that FCn(X) =
FCn+1(X), which implies that FC∗(X) exists and
is equal to FCn(X).

It is an immediate consequence of Lemma 15
and Lemma 16 below: the first one tells that FC
is increasing, the second that X and FC(X) have
the same bounding box.

Lemma 15. For any X ⊂ Zd, X ⊂ FC(X).

Proof Let x ∈ X ⊂ Zd = C d
0 . Obviously x ∈

CvxH (X). It follows that x ∈ Star (CvxH (X))
and, since Star (·) is idempotent, Star (x) ⊂
Star (CvxH (X)). The whole star of x belonging to
the subcomplex K := Star (CvxH (X)), the 0-cell x
belongs to the skeleton of K. Since all 0-cells of a sub-
complex are extremal points, it is an extremal point
of Skel (K), which concludes. □

Lemma 16. For any finite X ⊂ Zd, X and
FC(X) have the same bounding box.

Proof Let p ⊂ Zd be the lowest point of the
axis-aligned bounding box of X, i.e. ∀i, 1 ⩽ i ⩽
d, pi = minz∈X zi. Obviously, it is also the lowest
point of the bounding box of CvxH (X). Let K :=
Star (CvxH (X)). Since ∀x ∈ CvxH (X) , pi ⩽ xi, any

cell c of K that lie below point q along some coor-
dinate axis j has a twin cell e ∈ K in its boundary,
such that e is closed along coordinate j and ej = pj .
Continuing the argument along every coordinate axis
k where e is below point p, we know that there is a
digital point z ∈ K in the boundary of c, such that z
is not below p. Point z being a 0-cell it follows that
z ∈ Skel (K) while all m-cells incident to z, m > 0,
are not in Skel (K). We have just shown that no cells
of Skel (K) can be lower than p. The reasoning is the
same for the uppermost point. □

A first observation is that operation FC does
not modify fully convex sets, so the fully convex
envelope of a fully convex set X is X itself.

Lemma 17. If X ⊂ Zd is fully convex, then
FC(X) = X. So FC∗(X) = X.

Proof Indeed we have

FC(X) = Extr (Skel (Star (CvxH (X))))

= Extr (Skel (Star (X))) (Lemma 13)

= Extr (X) (Lemma 7)

= X (X ⊂ Zd)

□

Reciprocally, non fully convex sets are modified
through operation FC.

Lemma 18. If X ⊂ Zd is not fully convex, then
X ⊊ FC(X)

Proof By Lemma 15 we already know that X ⊂
FC(X). Let us show that there is a digital point
z ∈ FC(X) that is not in X. Since X is not fully
convex, there exists some cell c ∈ Star (CvxH (X))
such that c ̸∈ Star (X). It is possible that there are
other cells c′ in c such that c′ ∈ Star (CvxH (X)) and
c′ ̸∈ Star (X). To avoid ambiguities, we pick one, say
b, with lowest dimension.

Let z ∈ b ∩ Zd be a grid vertex of this cell (which
may be b itself). Then z ̸∈ X. Otherwise, Star (z) ⊂
Star (X), hence the cell b, which belongs to Star (z)
(through the equivalence z ⊂ b ⇔ b ∈ Star (z)),
would thus belong to Star (X), a contradiction with
the hypothesis.

Let us show now that z ∈ FC(X). Recall that

FC(X) = Extr (Skel (Star (CvxH (X)))) .

We have b ∈ Star (CvxH (X)). Furthermore b belongs
to the skeleton of Star (CvxH (X)), since it is a cell of
Star (CvxH (X)) with lowest dimension in the closure
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input X, Y := CvxH (X) Star (Y ), Skel (Star (Y )) X ′ = FC(X)

input X ′, Y ′ := CvxH (X ′) Star (Y ′), Skel (Star (Y ′)) X ′′ = FC(X ′) = FC2(X)
Fig. 1 Illustration of FC operation and fully convex envelope construction. Left: input digital set X and its convex hull,
middle: Star (CvxH (X)) (gray and thick black) and its skeleton (thick black), right: extremal points of the skeleton, i.e.
FC(X). Here X is digitally 0-convex but not fully convex. FC(X) is not even digitally 0-convex, while FC(FC(X)) is fully
convex and is therefore the fully convex envelope to X.

of c. Finally grid vertex z is an extremal point of b, so
belongs to FC(X). We conclude since z ̸∈ X holds.

□

Note that the Lemma also indicates where oper-
ation FC add digital points. Indeed, they are the
vertices of the cells touched by the convex hull but
not by the digital set itself. Lemmas 17 and 18 lead
immediately to a characterization of fully convex
sets:

Theorem 2. X ⊂ Zd is fully convex iff X =
FC(X).

It also induces the most important property
of the fully convex envelope operation: it always
outputs fully convex sets.

Theorem 3. For any finite X ⊂ Zd, FC∗(X) is
fully convex.

Proof By Theorem 1, FC∗(X) exists and there exists
some n such that FC∗(X) = FCn(X). Hence,
FC(FCn(X)) = FCn(X). By Theorem 2, FCn(X) is
fully convex, and so is FC∗(X). □

The operator FC∗(.) is thus increasing and idem-
potent. It however fails to be monotone because
Skel (.) is not a monotone operator with respect
to inclusion. So, it is not a hull operator [And06].
Nevertheless, it induces a preorder RFC∗ , i.e. a

reflexive and transitive binary relation, on digital
sets using

XRFC∗Y ⇐⇒ FC∗(X) = FC∗(Y ).

It induces equivalent classes among the set of
digital sets. It has its own topology through its
associated Alexandrov topology.

2.4 Algorithmic aspects

We now look at the algorithmic aspects of com-
puting FC∗. Since the computation of FC∗ is done
in a loop, we compute the complexity for each iter-
ation. At the beginning of iteration k the points
set is FCk−1(X). Using Quickhull, the convex hull
can be computed in O(nfr/r) [BDH96] with n
the number of input points, r the number of pro-
cessed points and fr the maximum number of
facets of r vertices (fr = O(r⌊d/2⌋/⌊d/2⌋!)). Obvi-
ously r ⩽ n, such that the complexity is bounded
by O(fn) with fn = O(n⌊d/2⌋/⌊d/2⌋!). Here, n is
the number of points in FCk−1(X). As described
in [Lac21], Star (CvxH (.)) can be computed using
2d Quickhull calls with the morphological charac-
terizations of full convexity. It is the most intensive
part of the computation. Then, Skel and Extr are
extracted by simple traversal over the volume of
Star (CvxH (.)). It is thus linear in the volume of
Star (CvxH (.)) which is bounded above by the
volume of the bounding box of FCk−1(X). Hence
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the complexity of one iteration is bounded by
O(n⌊d/2⌋). A precise bound on the number of itera-
tions is still under study. In practice 1-4 iterations
are generally observed in 3D, but we have come
along examples with depth about ten.

3 Relative fully convex
envelope

We now specialize operator FC in order to stay
into a given fully convex set. This creates fully
convex sets relative to a given fully convex set.
Given Y ⊂ Zd a fully convex set and X ⊂ Y , the
FC operator relative to Y is defined as

FC|Y (X) := FC(X) ∩ Y.

As previously, FCn
|Y (X) := FC|Y ◦ · · · ◦FC|Y (X),

composed n times. The fully convex envelope of X
relative to Y is obtained at the limit:

FC∗
|Y (X) := lim

n→∞
FCn

|Y (X) .

We thus have FC∗(X) = FC∗
|Zd (X). In prac-

tice, for X not included in Y , we compute
FC∗

|Y (X ∩ Y ) to get the fully convex envelope of
X ∩ Y .

As seen on Figure 2, the relative fully convex
envelope extends sets only using points of the fully
convex set Y . So when considering two naive lines
X and Y having disconnected intersection, both
subsets FC∗

|Y (X ∩ Y ) and FC∗
|X (X ∩ Y ) are fully

convex, hence are connected intersections.

Theorem 4. For any finite X ⊂ Zd and any fully
convex set Y ⊂ Zd, the digital set FC∗

|Y (X ∩ Y )
is fully convex and is included in Y .

Proof Let X ′ = X ∩ Y . To see that FC∗
|Y

(
X ′) is well

defined, we rely on previous properties of FC∗(). By
construction, since FC() is increasing, so is FC|Y ().

Moreover Lemma 16 readily extends to say that X ′

and FC|Y
(
X ′) have the same bounding box. It is

also true that if X ′ is fully convex then FC|Y
(
X ′) =

X ′ ∩ Y and so FC∗
|Y

(
X ′) = X ′. Let us now see why

Lemma 18 also extends to this situation. We hence
suppose that X ′ is not fully convex. Let us then con-
sider any cell b such that b ∈ Star

(
CvxH

(
X ′)) but

b /∈ Star
(
X ′). Since CvxH

(
X ′) ⊂ CvxH (Y ), we

deduce that b ∈ Star (CvxH (Y )) = Star (Y ) since Y

is fully convex. Moreover as in Lemma 18, we have
b ∩ Zd ∩X ′ = ∅. But since Y ⊂ Zd and b ∈ Star (Y ),
we deduce that b ∩ Zd ∩ Y ̸= ∅. Hence at least one
point in Y is added by FC|Y (). This implies that

X ′ ⊊ FC|Y
(
X ′). We can thus mimic Theorem 1 and

Theorem 2 to get that FC∗
|Y

(
X ′) exists and is fully

convex. It is included in Y by construction. □

Arithmetical planes with thickness at least as
thick as naive planes are fully convex [Lac21,
Theorem 7]. Hence the set Y can be chosen to be
either a naive or a standard plane. Then the fully
convex hull of X relative to Y is a fully convex
subset of Y containing X ∩Y . Hence, FC∗

|Y (X) is
a simply connected piece of the arithmetical plane
Y . To compute FC∗

|Y (.), we only have to incorpo-
rate the intersection with Y at each iteration. This
is directly linked to the complexity of deciding if
a point p is in Y . If Y is a digital plane then this
complexity is constant but in general it can be up
to the order of O(log(♯Y )).

4 Specific fully convex sets

In this section, we study a variety of digital sets
and examine their full convexity properties.

4.1 Fully convex sets using
Minkowski’s sum

The closed positive unit hypercube H+ in Rd is
the set [0, 1]d. The closed negative unit hyper-
cube H− in Rd is the set [−1, 0]d. Considering
Minkowski’s sum between a convexX and a closed
unit hypercube H+, for instance, we have that
CvxH (X ⊕H+) = CvxH (X) ⊕ CvxH (H+), or
equivalently that Y = X ⊕H+ is a convex set in
Rd. We can prove that Y ∩Zd is a fully convex set.

Lemma 19. Let X be a real closed convex set,
then (X ⊕H+) ∩ Zd is a fully convex set.

Proof Let us denote by Y the set X ⊕H+ and by Z
the set Y ∩Zd. Let us consider the set Yin = CvxH (Z).
It is clear that Yin ⊂ Y . We also have Yin ∩ Zd = Z
due to the convexity of Y .

A cell c belongs to Star (Yin) either if it is included
in Yin or if its closure c intersects Yin. In any cases,
the cell e which implies that c is in Star (Yin) must
intersect Yin. It could be c or a cell on its boundary.
So for this cell e there are two cases, (i) either it is
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Y

X

Y Y

Naive lines intersection Skel (Star (CvxH (X ∩ Y ))) FC(X∩Y ) ∩ Y = FC∗
|Y (X)

Fig. 2 Relative fully convex envelope for naive lines having disconnected intersection.

included in Yin, or (ii) it is not and its intersection
with Yin is not empty.

In case (i) since Yin is closed, the 0-cell on the
boundary of e also belong to Yin. Hence e is in Star (Z).
In case (ii), let us call E = ∥e∥∩Yin ̸= ∅. Since E ⊂ Y ,
there exists a set Ex ⊂ X such that E ⊂ Ex ⊕ H+.
But, Ex ⊕ H+ ∩ Zd ̸= ∅ by definition of H+. Hence
considering z ∈ Ex ⊕H+ ∩ Zd, we have e ∈ Star (z).

So we have Star (Yin) ⊂ Star (Z) and since the
converse is always true, we get the equality of those
sets meaning that Z is fully convex. □

Let us remark that the main argument is that if
x ∈ Rd, then ({x} ⊕H+) ∩ Zd ̸= ∅. This implies
that the result is also true forH− and for super set
of the unit hypercubes such that the 2-hypercube
[−1, 1]d.

4.2 Fully convex sets from Star

We now show that for a convex set Y ⊂ Rd,
Extr (Star (Y )) is fully convex. This implies that
Extr (Star (CvxH (X))) is fully convex for any real
set X. In general, this fully convex set can be
thicker than FC∗(X).

Lemma 20. Let c ∈ C d ,

Extr (Star (c)) =
(
∥c∥ ⊕ [−1, 1]d

)
∩ Zd.

Lemma 21. Let Y ⊂ Rd a closed convex set, then

Extr (Star (Y )) =
(
Y ⊕ [−1, 1]d

)
∩ Zd.

Proof Let K∩ = {c ∈ C d , ∥c∥ ∩ Y ̸= ∅}. We have
K∩ ⊂ Star (Y ). The converse is false when a cell
boundary intersects Y but the cell does not. Let us also
introduced the dilated version of K∩ as Y⊕ = ∥K∩∥⊕
[−1, 1]d. It must be noted that Y⊕ ⊂

(
Y ⊕ [−1, 1]d

)
and that Y⊕ =

⋃
c∈K∩

∥c∥ ⊕ [−1, 1]d.
We note that ∥c∥ ∩ Y ̸= ∅ implies that either (i)

∥c∥ is fully included in Y or (ii) ∥c∥ intersects both Y
and its complimentary.

In case (i), since Y is closed, ∥c∥ ⊂ Y . So in
particular all 0-dimensional cells of ∂c belong to Y .
Hence all 0-dimensional cells in the boundary of c
belong to Y⊕. This implies, using Lemma 20, that

Extr (Star (Y )) and
(
Y ⊕ [−1, 1]d

)
∩ Zd coincide on

those cells included in Y .
In case (ii), since Y is closed, ∥c∥ ∩ Y is closed.

Hence, (∥c∥ ∩ Y ) ⊕ [−1, 1]d is closed. But, using for
instance ∞-norm arguments, all 0-dimensional cells in
∂c belong to (∥c∥ ∩ Y )⊕[−1, 1]d. Still using Lemma 20,

then Extr (Star (Y )) and
(
Y ⊕ [−1, 1]d

)
∩Zd coincide

on those cells not included in Y but intersected by Y .
However, we know that some cells might be in

Star (Y ) but not in K∩. We hence consider such out-
side cells O. Any such cell o ∈ O verifies ∥o∥ ∩ Y = ∅
with ∥o∥∩Y ̸= ∅. In other word, there always exists a
cell eo ∈ ∂o such that ∥eo∥∩Y ̸= ∅. Hence eo ∈ K∩. So
the 0-dimensional cells on the boundary of eo belong
to Y⊕. This implies that the 0-dimensional cells on
the boundary of o not captured by case (i) and (ii)
are indeed captured by the dilation of 0-dimensional
cells on the boundary of eo. So, even on those cells,

Extr (Star (Y )) and
(
Y ⊕ [−1, 1]d

)
∩ Zd coincide.

□

The characterization given in Lemma 21 implies
that Extr (Star (Y )) is obtained by a simple
Minkowski’s sum with the 2-hypercube. This
implies the following.

Lemma 22. Let Y ⊂ Rd a closed convex set.
Then Extr (Star (Y )) is fully convex.

Proof With the characterization given by Lemma 21
and Lemma 19 applied to the 2-hypercube [−1, 1]d, we
derive the full convexity of Extr (Star (Y )). □

4.3 Projection of fully convex sets
along an axis

We here study the stability of fully convex sets
with respect to orthogonal projections along axis
in Rd. We denote by Pj the orthogonal projector
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associated to the j-th axis, which consists in omit-
ting the j-th coordinates for all points of Zd. By
direct extension, those projectors are defined for
cells in C d . Pj are called axis projectors. Those
projectors share the property that the image of a
cell c ∈ C d is a cell in C d−1 and those projections
are the only projections for which this property is
true. Moreover, the image of a point in Zd by any
axis projector is a point in Zd−1.

Lemma 23. Let X be a full convex set in Zd and
any axis projector Pj, then Pj(X) is a full convex
set in Zd−1.

Proof For the real set Y = CvxH (X), its star is com-
posed of cells intersected by Y and of cells for which
only their topological boundaries intersect Y (but the
cell itself do not). We therefore study the behavior of
those two disjoint subsets of cells respectively in case
(i) and in case (ii).

Case (i). Since X is a digital set in Zd then X̂j =

Pj(X) is a digital set in Zd−1. We consider a cell

c ∈ C d−1 intersected by CvxH
(
X̂j

)
, the convex hull

of X̂j . The inverse image P−1
j (c) is an infinite open

convex set. To the real set P−1
j (c) we associate the

set of cells Cc = {e ∈ C d , ∥e∥ ∩ P−1
j (c) ̸= ∅}. Let

us denote by K the intersection P−1
j (c) ∩CvxH (X),

which is a non empty open convex set K. We con-
sider the set of cells Kc = Star (K) ∩ Cc. Since X is
a fully convex set, every cell in Star (CvxH (X)) is in
Star (X). This is in particular true for all cells in Kc

such that every cell in Kc is in Star (X). So for each
e ∈ Kc, we associate a point ze in X such that e is in
Star (ze). The projection of e is, by definition, c and
the projection of ze is a point ẑe in X̂j . We can remark

that c is in Star (ẑe) ⊂ Star
(
X̂j

)
.

Case (ii). Now if we consider a cell c such

that ∥c∥ ∩ CvxH
(
X̂j

)
= ∅. Then, c belongs to

Star
(
CvxH

(
X̂j

))
if and only if there exists c′ ∈ ∂c

such that ∥c′∥ ∩ CvxH
(
X̂j

)
̸= ∅. Applying the same

construction that the one of the first case, we can have
a point ze′ in X such that its projection ẑe′ contains
c′ in its star. But, since c′ ∈ ∂c, Lemma 1 implies that
Star (c) ⊂ Star

(
c′
)
. So, since Star

(
c′
)
⊂ Star (ẑe′) we

have Star (c) ⊂ Star (ẑe′) ⊂ Star
(
X̂j

)
.

We hence have proved that Star
(
CvxH

(
X̂j

))
⊂

Star
(
X̂j

)
. Since Star (.) is increasing and X̂j ⊂

Fig. 3 A non fully convex set whose slices are all fully
convex.

CvxH
(
X̂j

)
, the converse is true. Hence, Star

(
X̂j

)
=

Star
(
CvxH

(
X̂j

))
which means that X̂j is fully con-

vex. □

One could wonder if asking every axis-aligned
slices of a digital object to be fully convex is a
stronger property than just asking the projections
to be fully convex. As for the projections, we also
have the implication: it has been proved in [Lac22]
that for fully convex, their slices along any canon-
ical axis are all fully convex. However, as shown in
Figure 3, the reciprocal property is generally false.
The problem lies in the empty slices: an empty
slice is indeed fully convex by definition of convex-
ity of empty sets. The reciprocal property for the
projections is still an open question.

Open Problem 1. Let X be a set in Zd such
that for all j, Pj(X) is full convex. Is X a fully
convex set ?

4.4 Discussion on fully convex sets

We have presented several ways to build a
fully convex set from an arbitrary digital set
X. Indeed we can use the envelope operator
FC∗(X), any asymmetric Minkowski sum such
as (CvxH (X) ⊕ H+) ∩ Zd, or directly compute
Extr (Star (CvxH (X))) (which is equivalent to a
symmetric Minkowski sum). This is illustrated on
Figure 4. Clearly these operators are not equiva-
lent and we list on Table 1 their respective pros
and cons.

We denote by Z := f(X) for an operation f .
Operation (CvxH (X) ⊕ H+) ∩ Zd is the fastest
to compute, but the resulting digital set Z is an
asymmetric expansion of X in an arbitrary direc-
tion, with a quite large number of points in Z \X.
Operation Extr (Star (CvxH (X))) is a little bit
slower to compute, yet remains symmetric. How-
ever the set Z \X is really large (and the worse it
is in higher dimension). Both operations are not
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FC∗(X) (CvxH (X)⊕H+) ∩ Zd Extr (Star (CvxH (X)))
Fig. 4 Visual comparison of the different operators that can build a fully convex set from an arbitrary digital set.

operator Id. on fully cvx. idempotence symmetry # (Out)/# (In) efficiency

FC∗(X) yes yes yes low unclear

(CvxH (X)⊕H+) ∩ Zd no no no medium yes
Extr (Star (CvxH (X))) no no yes high yes

Table 1 Illustration of the respective qualities of the different operators that can build a fully convex set from a digital
set X: (i) operator f , (ii) f(X) = X holds for X fully convex, (iii) f(f(X)) = X holds, (iv) whether f is invariant to
symmetries and rotations, (v) size of # (f(X)) wrt # (X), (vi) the efficiency to compute f (’yes’ means direct bound on
the computational complexity).

really envelope operators since they modify input
sets even when they are fully convex.

On the contrary, the envelope operation
FC∗(X) is generally slower to compute, since it
requires sometimes several iterations of convex
hull computations. However, the set Z \X is the
smallest among all three operations. The set X is
expanded symmetrically. It leaves fully convex sets
invariant. Note also that the number of iterations
of operator FC(·) is upper bounded by # (Z \X),
and this upper bounded is greatly overestimated
in general. Overall the envelope operator FC∗(·)
is much more interesting, since it has nice theo-
retical properties while being still computable in
a reasonable amount of time.

5 Digital polyhedron

We now present digital models for Euclidean poly-
hedra based on envelopes. A polyhedron P is a
collection of finite convex sets called cells, such
that each cell σ is characterized by a finite num-
ber of points V (σ) called vertices. Cell σ is a face
of cell σ′ if V (σ) ⊂ V (σ′). The vertices V of the
polyhedron are the union of the vertices of all
cells. Generally an abstract dimension is attached
to cells, 0 for vertices, 1 for edges, 2 for faces, etc.,
and must be consistent with the face relation. We
take an interest here in polyhedra with maximal
dimension d − 1, i.e. surfaces, whose (d − 1)-cells

are called facets. Figure 5, left, shows two polyhe-
dra in 3D space: a quadrangulated surface Q with
non planar facets and a triangulated surface T
with planar facets.

Assuming each vertex of P to be a point of Zd,
the (generic) digital polyhedron P∗ associated to
P is the collection of digital cells that are subsets
of Zd such that: if σ is a cell of P, then σ∗ is a
cell of P∗ with σ∗ := FC∗(V (σ)). Such a digital
polyhedron is illustrated on Figure 5, top row.

When vertices of facets are coplanar, we can
build a digital polyhedron whose facets are pieces
of arithmetic planes. Pure simplicial complexes of
dimension d − 1 are important examples of such
polyhedron. For T ⊂ Zd made of coplanar points,
let us denote by P1(T ) the median standard plane
(resp. P∞(T ) the median naive plane) defined by
T .

The standard (resp. naive) digital polyhedron
P∗

1 (resp. P∗
∞) is the collection of digital cells

subsets of Zd, defined as follows. For p ∈ {1,∞},
if σ is a facet of P, then σ∗

p is a cell of P∗
p with

σ∗
p := FC∗

|Pp(V (σ)) (V (σ)). For any cell τ that is
not a facet, then it has as many geometric real-
izations as incident facets σ and each pair (τ, σ)
is digitized as (τ, σ)∗p := FC∗

|σ∗
p
(V (τ)). Cell pairs

have the same role as half-edges in winged-edge
data structures and more generally darts in com-
binatorial maps. Note that other thicknesses could
be chosen for a digital polyhedron but naive and
standard are the most common ones. A standard
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Tri-mesh T , planar faces ♯T ∗
∞ = 46639 ♯T ∗

∞ = 182451

Fig. 5 Discretization of Euclidean polyhedral models without or with planar facets (left), at gridstep h = 1 (middle) and
h = 0.5 (right).

(resp. naive) digital polyhedron associated to a tri-
angulated mesh is illustrated on Figure 5, middle
row (resp. bottom row). They require less digi-
tal points than the generic digital points, while
keeping their separation properties. We also dis-
play on Figure 6 clipped and zoomed versions of
these three polyhedral models. One can see that
these models are surfacic (they are hollow) and
that their thickness depends on the chosen model.

To better understand the three defined polyhe-
dra, let us consider a single triangle and its edges
and vertices: its three digital models are displayed
in Figure 7. All induced cells are fully convex, but
we notice that standard cells are thinner while
naive cells are even thinner. What might be sur-
prising is that relative fully convex envelope may
create larger subset than expected, especially for
the naive triangle example. One should keep in
mind that expanding a set inside a naive plane to
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Generic polyhedron Q∗ Standard polyhedron T ∗
1 Naive polyhedron T ∗

∞
♯Q∗ = 81044 ♯T ∗

1 = 68603 ♯T ∗
∞ = 46639

Fig. 6 Close view on clipped polyhedral models (digitized at gridstep h = 1. It can be seen that the naive polyhedral
model is thinner than the standard polyhedral model, while the generic polyhedral model is the thickest.

become fully convex is a very restrictive transform:
edges have to expand more within naive plane P∞
than within standard plane P1. Of course, this is
quite an extreme example and edges are narrower
in most cases.

The following property is quite straightfor-
ward, but shows that every digital polyhedron
covers well the cells of its associated Euclidean
polyhedron, and that the inclusion/face property
between cells is satisfied in the digital domain.
Digitizing a polyhedron at different gridstep h
is just a matter of embedding every real vertex
point q as a digital vertex q∗ = round(q/h) (see
Figure 5).

Proposition 1. Let σ∗ be a digital cell of
a generic, standard or naive digital polyhe-
dron. Then it is fully convex, hence digi-
tally connected and simply connected. We have
Star (CvxH (V (σ))) ⊂ Star (σ∗). For any pair of
cells (τ, σ) such that σ is a face of τ , Star (τ∗)
covers Star (CvxH (V (σ))).

6 Implementation details

From the different definitions of full convexity
and fully convex envelope, it is clear that sev-
eral operations like Star (·), CvxH (·), Skel (·) must
be implemented in a careful way to be efficient
and dimension independent. We present in this
section several improvements we have made that
makes these computations much more efficient
than a naive implementation. They involve an
implementation of a convex hull algorithm, a new

characterization of fully convex sets, a careful
choice of a data structure to represent lattice
points and cells and a trick to count lattice points
within a polytope.

Convex hull computation.

The most common algorithm for computing the
convex hull of a given set of points is the classi-
cal quickhull algorithm [BDH96]. The most famous
dD implementation is Qhull.1 However this pro-
gram represents point coordinates with floating-
point numbers and may return erroneous and
approximate convex hulls when points are not in
general position. This is a considerable issue when
dealing with lattice points, where co-sphericities
are extremely common. Another common dD
implementation is CGAL,2 which has the advantage
of offering kernels with guaranteed results, at the
price of slower computations. Another drawback
is that it always outputs a triangulation, so co-
sphericities are arbitrarily triangulated. Note also
that there exists GPU implementations of quick-
hull [MZXZ18]. They are up to ten times faster
than Qhull, but for ten millions of points. For
sets with less than 500K points, the GPU pro-
gram is much slower. Note also that these GPU
implementations are limited to 2D and 3D.

We propose thus a new implementation of
quickhull algorithm dedicated to lattice points (or
rational points), as a DGtal package.3 Lattice

1www.qhull.org
2www.cgal.org
3www.dgtal.org

www.qhull.org
www.cgal.org
www.dgtal.org
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generic faces ♯T ∗ = 1193 standard faces ♯T ∗
1 = 985 naive faces ♯T ∗

∞ = 567

Fig. 7 A generic digital triangle T ∗ with its darker edges and black vertices (p, q, r) (left); corresponding standard digital
triangle T ∗

1 which lies in the median standard plane P1(p, q, r) (middle); corresponding naive digital triangle T ∗
∞ which lies

in the median naive plane P∞(p, q, r) (right).

points may have fixed-sized integer coordinates
(int32, int64) or even arbitrary size integer coor-
dinates (using GMP library4). In order to have cor-
rect geometric computations (inside/outside tests
and determinant computations to get the nor-
mal vector), the user can choose also the type of
integer numbers for the geometric computations.
The table below shows the maximum width of the
bounding box containing all lattice points in order
to get exact convex-hull-computations in all cases
when choosing int64 both for coordinates and
geometry computations. When the width exceeds
this bound (which depends on the dimension),
GMP arbitrary size integers must be used, with
an approximate 25 times slow-down factor.

dimension 2 3 4 5 6
max. width 2e9 1.5e6 4e4 5e3 1.2e3

Experiments show that our implementation is
as fast as qhull but with correct results, and is
generally two times faster than CGAL version. See
the package documentation5 for more details.

Full convexity test and operator FC(·) with
one convex hull computation.

The morphological characterization of full convex-
ity induces an algorithm for checking full con-
vexity that requires up to 2d − 1 convex hull
computations. Let us recall how it works. We
introduce a discrete analog of Minkowski sums of
unit axis-aligned edges, squares, cubes, etc. Let

4www.gmplib.org
5https://dgtal-team.github.io/doc-nightly/

moduleQuickHull.html

Id = {1, 2, . . . , d} be the set of directions of the
space. Let U∅(Z) := Z, and, for α ⊂ Id and
i ∈ α, we define recursively Uα(Z) := Uα\i(Z) ∪
ei(Uα\i(Z)). Note that ei(Z) is simply the set Z
translated by the i-th axis unit vector. The previ-
ous definition is consistent since it does not depend
on the order of the sequence i ∈ α.

Then [Lac22, Theorem 6] states: a subset X ⊂
Zd is digitally k-convex for 0 ⩽ k ⩽ d iff, for
any α ⊂ Id, # (α) = k, it holds that Uα(X) =
CvxH (Uα(X)) ∩ Zd. It is thus fully convex if the
previous relation holds for all k, 0 ⩽ k ⩽ d.

There are 2d different subsets of Id, and since
the last d-convexity check is not necessary (see
Lemma 4 of [Lac22]), this characterization induces
an algorithm that must compute 2d−1 convex hull
and enumerate the lattice points within.

In fact, one computation is enough. We will
achieve this through Theorem 5. Now let us recall
the definition of mapping Z : C d → Zd which
associates to any cell σ, the digital vertex of σ
with highest coordinates. Its restriction to C d

α is
denoted by Zα. It was shown in [Lac22, Lemma 8]
that Zα is a bijection for any α ⊂ Id. Since we
use α = Id in the remaining of the proof, we omit
it in the notations. Hence Z is a bijection from
d-cells to lattice points.

We say that a cell c ∈ C d is surrounded by a
set of d-cells D ⊂ C d

d whenever the d-dimensional
cells of Star (c) form a subset of D, and we write
c ≺ D.

Theorem 5. It holds that Star (CvxH (X)) =
{c ∈ C d , c ≺ Z −1(CvxH (UId(X)) ∩ Zd)}.

https://dgtal-team.github.io/doc-nightly/moduleQuickHull.html
www.gmplib.org
https://dgtal-team.github.io/doc-nightly/moduleQuickHull.html
https://dgtal-team.github.io/doc-nightly/moduleQuickHull.html
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Proof Let us remind that H+ is the unit hypercube
with lowest point 0. We recall [Lac22, Lemma 9] (spe-
cialized for α = Id): for any Y ⊂ Rd, Z (C d

d [Y ]) =

(Y ⊕H+)∩Zd. We recall now [Lac22, Lemma 11] which
implies CvxH (X)⊕H+ = CvxH (UId(X)). Applying
[Lac22, Lemma 9] and this property on Y = CvxH (X)
gives:

Z (C d
d [CvxH (X)]) = (CvxH (X)⊕H+) ∩ Zd

= CvxH (UId(X)) ∩ Zd, (3)

which tells that CvxH (UId(X))∩Zd corresponds one-
to-one with the d-cells touched by CvxH (X).

It remains thus to be shown that
Star (CvxH (X)) = {c ∈ C, c ≺ C d

d [CvxH (X)]},
or in other terms, C d[CvxH (X)] = {c ∈ C, c ≺
C d
d [CvxH (X)]}. Clearly the d-cells of these two sets

are the same. Pick any k-cell c in C d , k < d.
If c ∈ C d[CvxH (X)], so c̄∩CvxH (X) ̸= ∅. But for

any e ∈ Star (c), ē ⊃ c̄ so we also have ē∩CvxH (X) ̸=
∅. Letting E be the d-cells of Star (c). Then every cell
of E touches CvxH (X), so E ⊂ C d

d [CvxH (X)], so

c ≺ E ⊂ C d
d [CvxH (X)].

Conversely, let c be any k-cell such that c ≺
C d
d [CvxH (X)]. Let E be the d-cells of C d

d [CvxH (X)]
surrounding c. Let us denote e1, . . . , en the cells of
E (a finite set with n := 2d−k elements). Since
each cell ei touches CvxH (X), then there exists for
each one a point xi ∈ ēi with xi ∈ CvxH (X).
By convexity, CvxH

(
{xi}i=1,...,n

)
⊂ CvxH (X). But

c is at the center of its surrounding d-cells (ei),
so according to Lemma 24 (in Appendix), we have
CvxH

(
{xi}i=1,...,n

)
∩ c̄ ̸= ∅. We have just found

a common real point between CvxH (X) and c̄, so
c ∈ C d[CvxH (X)]. □

Since Lemma 13 tells that a digital set X is
fully convex iff Star (X) = Star (CvxH (X)), then
Theorem 5 above states that Star (CvxH (X)) can
be computed directly from CvxH (UId(X)) ∩ Zd,
which involves only one convex hull computation
and lattice point enumeration within the polytope.
This theorem also shows that Star (CvxH (X)) in
operator FC(·) also requires only one convex hull
computation.

A row-oriented data structure for sets of
lattice points.

The idea here is to notice that the lattice points
within a polytope form an interval of consecutive
points along any axis. And more generally lattice
sets representing digital shapes are not composed
of randomly distributed points and can be com-
pactly and efficiently represented with intervals.

Therefore we represent a set of integers N as an
interval sequence J(N) of k integral pairs (ai, bi)
such that:

• u ∈ N ⇔ ∃i, 1 ⩽ i ⩽ k, ai ⩽ u ⩽ bi (set),
• ∀i, 1 ⩽ i ⩽ k, ai ⩽ bi (sorted sequence),
• ∀i, 1 ⩽ i ⩽ k − 1, bi < ai+1 − 1 (minimality).

Given an axis direction j, we define the row rep-
resentation of a set of lattice points X as an
associative map M j(X) from lattice points to
interval sequences (i.e. dictionary), as follows:

If x ∈ Zd, we denote by x̂j the projected point
of Zd−1 with omitted coordinate xj . For p ∈ Zd−1,
let Xj

p = {x ∈ X, x̂j = p}. It is clear that every

point x ofXj
p can be identified by exactly one inte-

ger, its j-th coordinate xj . We define thus the set
of integers N(Xj

p) as {xj , x ∈ Xj
p}. Then the value

of M j(X)(p) is defined as the interval sequence
J(N(Xj

p)).
Testing if a point q belongs to X is equivalent

to check if qj ∈ Mj(X)(q̂j), i.e. qj ∈ J(N(Xj
q̂j )).

This data structure is implemented as the class
LatticeSetByIntervals6 in DGtal. A few further
remarks on the row representation of a lattice set:

• its worst-case space complexity is the same the
usual set data structure;

• per row, a sequence of intervals is more compact
to store than a set of points except when there
is only one or two points on the row (and the
higher the dimension the more compact is the
row representation);

• if the lattice set is digitally convex, each row
stores at most one interval;

• no data is associated to an empty row in the
associative container;

• checking if a point belongs to a row represen-
tation is at least as fast as checking if a point
belongs to the usual set data structure (faster
on average);

• counting the number of points is much faster
(amounts to count bi− ai +1 for each interval);

• usual set operations (inclusion, intersection,
union, etc) are much faster in practice in row
representation, and worst-cases are the same;

• a set of lattice cells can easily be represented
as a set of lattice points through the Khalimsky

6https://dgtal-team.github.io/doc-nightly/classDGtal 1
1LatticeSetByIntervals.html

https://dgtal-team.github.io/doc-nightly/classDGtal_1_1LatticeSetByIntervals.html
https://dgtal-team.github.io/doc-nightly/classDGtal_1_1LatticeSetByIntervals.html
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coordinates of the cells, and their induced row
representation is also efficient;

• any set of lattice cells defined by the inter-
section with a polytope also induces a row
representation with one interval per row;

• Operations Star (·), Skel (·) and Extr (Skel (·))
are also efficiently implemented in row represen-
tation;

• the best choice for direction j is generally
the direction of the set where it is the most
elongated.

Enumerating lattice points within a
polytope.

Although Barvinok’s theory [Bar94] leads to theo-
retically faster algorithms for enumerating lattice
points within a polytope, it is not straightforward
to implement. We are aware of only one complete
implementation, LattE,7 and it cannot directly be
interfaced with C/C++ libraries. Their command
line interface is unfortunately slow and it is yet not
clear for what size of data that kind of approach
can be faster than naive enumeration within the
bounding box of the polytope.

We choose to optimize the naive enumeration
within the bounding box of the polytope. The idea
is to examine the intersection of axis-aligned rays
with the polytope, to extract the interval of lattice
points that is common to the ray and the polytope.

More precisely, the convex hull computation
builds a finite polytope P with m facets, defined
as m inequalities ni ·x ≤ µi, for x a lattice point of
Zd. Let B be the tight bounding box of P and let
j be the axis direction where B is the most elon-
gated. Let Bj := Pj(B) be the projection of B
along direction j, hence a rectangular domain of
Zd−1. Let also r and s be the minimal and max-
imal coordinates of B along j. For every point
p ∈ Bj , with q := (p1, . . . , pj−1, r, pj , . . . , pd−1),
we compute the intersection of the row along j
containing p with the polytope P as follows:

xM := max
nj

i>0

{
x ∈ Z / x ⩽ 1 +

µi − q · ni

nj
i

}
,

xm := min
nj

i<0

{
x ∈ Z / x ⩾

µi − q · ni

nj
i

}
.

7https://www.math.ucdavis.edu/∼latte/

Then the interval of integer coordinates satisfying
the i-th inequality is [r + xm, r + xM [ which may
be empty. We then intersect all the intervals given
by every inequality to obtain an interval [a, b[. If
it is not empty, the lattice points of polytope P
along the row align with j and going through p
are exactly:

{q ∈ Zd, s.t. q = p+ xej , a ⩽ x < b, x ∈ Z},

where p is canonically injected in Zd with null j-th
coordinate. Computing xm and xM can be done in
constant time using Euclidean division, assuming
integers fit in a standard 32-bits or 64-bits register.
We provide in Algorithm 1 and Algorithm 2 the
detailed code that computes interval [a, b[.

Algorithm 1 Update: given an interval of inte-
gers [a, b[, compute its subset [a′, b′[ such that
∀x, a′ ⩽ x < b′, (p+ xej) =: x satisfies n · x ≤ µ.

Input (a, b): an interval of integers [a, b[
Input (n, µ): the inequalities n · x ≤ µ
Input j: an integer such that 1 ⩽ j ⩽ d
Input p: a point of Zd with pj = 0
Output (a′, b′): an interval of integers [a′, b′[
1: pj ← a
2: c← n · p
3: if (nj = 0) ∧ (c > µ) then
4: b← a ▷ Empty interval
5: else if nj > 0 then
6: d← µ− c
7: if d < 0 then
8: b← a ▷ Empty interval
9: else

10: b← min(b, a+ d/n+ 1)
11: end if
12: else if nj < 0 then
13: d← c− µ
14: if d ⩾ 0 then
15: a← max(a, a+ (d− nj − 1)/(−nj))
16: end if
17: end if
18: return (a, b)
19: ▷ Note that / denotes the Euclidean division

It is clear that the complexity of comput-
ing the lattice points within polytope P along
the row passing by p and aligned with axis j is
O(m) as worst case. The global complexity is thus

https://www.math.ucdavis.edu/~latte/
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Algorithm 2 ComputeIntersection: compute
the intersection of the row along j containing point
p with the polytope P as an interval of integer
coordinates [a, b[.

Input (r, s): the coordinates of the bounding box
of the polytope along direction j

Input (ni, µi)i=1,...,m: the m inequalities ni ·x ≤
µi of the polytope

Input j: an integer such that 1 ⩽ j ⩽ d
Input p: a point of Zd with pj = 0
Output (a, b): an interval of integers
1: i← 1
2: (a, b)← (r, s+ 1)
3: while (i ⩽ m) ∧ (a < b) do
4: (a, b)← Update((a, b), (ni, µi), j, p)
5: i← i+ 1
6: end while
7: return (a, b)

O(m#(Bj)), which is much better than the naive
O(m#(B)).

This approach to lattice point enu-
meration has been coded in class
BoundedLatticePolytopeCounter8 and exper-
iments in 2D, 3D and 4D indicates a practical
speed-up between 5× to 200× depending on the
size of convex shapes.

Note finally that this “row intersection”
approach to lattice point enumeration within the
polytope allows a straightforward build of a row
representation for this set of lattice points.

7 Conclusion and perspectives

We have studied in this paper several functions for
building fully convex sets containing an arbitrary
digital set. Among them, the operator FC∗(.) is
particularly interesting since it has all the prop-
erty of an envelope operator. Indeed, for any
digital set X, FC∗(X) is proved to be fully con-
vex and X ⊂ FC∗(X). Furthermore this operator
leaves fully convex sets unchanged. Moreover,
the operator is well defined in arbitrary dimen-
sion as well as computable. This operator can be
restricted to stay within a fully convex set Y , lead-
ing to the relative envelope operator FC∗

|Y (X).

8See package Digital Convexity and class BoundedLattice-
PolytopeCounter.

It builds fully convex sets within Y . Since clas-
sical naive and standard planes are fully convex,
this leads to a straightforward computation of dig-
ital analogues to polyhedral models of Rd. The
obtained results are quite appealing: we can con-
trol the incidence relationship between cells, while
their full convexity guarantees their topological
and geometrical properties. These digital polyhe-
dral models embrace both meshes with planar or
non planar faces. We also describe how to provide
an efficient implementation of the envelope oper-
ator when the dimension increases. We provide a
publicly available implementation in the DGtal9

library.
In future works, we would like to study more

precisely the iterative process of FC∗(.), in order
to localize where full-convexity defects reside. This
could further accelerate the operator by providing
more practical bounds on the number of iterations.
Incremental quickhull should also be considered. A
more general goal is to extend the envelope process
to a true convex-hull operator. The difficulty is to
ensure the monotone property. In case of success,
full convexity would then be a digital analogue to
convexity for digital spaces.

A Useful results

We relate convexity and intersections with the
cubical grid complex. The following property is
useful to demonstrate that we can get a fast
implementation of Star (CvxH (·)).

Lemma 24. Let c be a k-cell of C d and let
D = (σ1, . . . , σn) be the d-dimensional cells sur-
rounding c (i.e., Star (c) ∩ C d

d = D), with n =
2d−k. Picking one point xi in each σ̄i, then it
holds that there exists a point of c̄ that belongs to
CvxH ({xi}i=1,...,n).

Proof Without loss of generality, we can choose the
cell c to have its infimum point at position 0. So the
points of c̄ have their i-th coordinate equal to 0 if c
is closed along direction i while they have their i-th
coordinate in [0, 1] if c is open along direction i. If x
is a point, we denote by xj its j-th coordinate.

The proof is by induction on d−k. For k = d−1, let
j be the axis where the (d−1)-cell c is closed.D is com-
posed of two d-cells. Choosing σ1 to be the one further

9www.dgtal.org

https://dgtal-team.github.io/doc-nightly/moduleDigitalConvexity.html
https://dgtal-team.github.io/doc-nightly/classDGtal_1_1BoundedLatticePolytopeCounter.html
https://dgtal-team.github.io/doc-nightly/classDGtal_1_1BoundedLatticePolytopeCounter.html
www.dgtal.org
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Fig. 8 Illustration of the proof of Lemma 24. The induc-
tion divide the problem into two subproblems carried by
sets of d-cells D1 and D2. On each subproblem Di, it is
possible to build a point yi on cell c̄i that is a convex com-
bination of points x2i+1 and x2i+2. Then y is a convex
combination of points y1 and y2, and belongs to c̄. Since c
is a 0-cell here, we have y = c.

along axis j, we have necessarily xj
1 ⩾ 0 and xj

2 ⩽ 0.
Assume both coordinates are zero, then either x1 or
x2 belongs to c̄ and obviously to CvxH ({x1,x2}), and
we conclude this case. If at least one of xj1, x

j
2 is non

null, then xj1 − xj2 is strictly positive. Let λ =
−xj

2

xj
1−xj

2

.

Clearly 0 ⩽ λ ⩽ 1. Let now y := λx1+(1−λ)x2. This
point y is in CvxH ({x1,x2}), being a convex combina-
tion of two points of this set. Now a short computation
gives yj = 0. Along every direction m ̸= j, cells c and
σ1, σ2 are open, so 0 ⩽ xm1 ⩽ 1, 0 ⩽ xm2 ⩽ 1. It fol-
lows that 0 ⩽ ym ⩽ 1 since y is a convex combination
of these points. We have just shown that y ∈ c̄, which
concludes for this case.

Let us assume that the property holds for a given
d − k, 1 ⩽ d − k < d, and let us show that it is true
d− k + 1. The proof is illustrated on Figure 8. Pick j
a direction where c is closed. Let D1 (resp. D2) be the
d-cells surrounding c having positive (resp. negative)
j-th coordinate. Let also c1 (resp. c2) be the d−k-cell
such that Star (c1) = D1 (resp. Star (c2) = D2). Then
by induction we have a point y1 ∈ c̄1 and a point
y2 ∈ c̄2 that both belong to CvxH

(
{xi}i=1,...,n

)
.

The same reasoning as above is made to compute a

coefficient λ =
−yj

2

yj
1−yj

2

. One can check that, denoting

y := λy1 + (1 − λ)y2, we have that: yj = 0, ym = 0
for every direction m where c1 or c2 (or c) is closed

(by induction), and 0 ⩽ ym
′
⩽ 1 for every direc-

tion m′ where c1 or c2 (or c) is open. We have just
shown y ∈ c̄ and also y ∈ CvxH

(
{xi}i=1,...,n

)
since

CvxH ({y1,y2}) ⊂ CvxH
(
{xi}i=1,...,n

)
by convexity.

□
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