Full convexity for polyhedral models in digital spaces

Fabien Feschet¹ Jacques-Olivier Lachaud²

¹LIMOS, University Clermont Auvergne ²LAMA, University Savoie Mont Blanc

October 25th, 2022 Discrete Geometry and Mathematical Morphology (DGMM2022) Université de Strasbourg Full convexity for polyhedral models in digital spaces

Context and objectives

What is full convexity ?

Fully convex envelope

An envelope relative to a fully convex set

Polyhedral models

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Why digital convexity ?

- no (infinitesimal) differential geometry for digital shapes
- convexity: a fundamental tool to analyze the geometry of shapes

- identifies convex/concave/flat/saddle regions
- gives locally its piecewise linear geometry
- facets give normal estimations

Why digital convexity ?

- no (infinitesimal) differential geometry for digital shapes
- convexity: a fundamental tool to analyze the geometry of shapes
- identifies convex/concave/flat/saddle regions
- gives locally its piecewise linear geometry
- facets give normal estimations
- convexity = foundation of convex analysis, linear programming
- digital convexity = foundation of digital convex analysis, integer linear programming ?

Natural digital convexity is not satisfactory

Definition (Natural digital convexity (or *H*-convexity)) $X \subset \mathbb{Z}^d$ is digitally convex iff $\operatorname{Cvxh}(X) \cap \mathbb{Z}^d = X$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Digital convexity does not imply digital connectedness !

Summary of digital convexity properties

properties	H-convexity
simple, generic	+ (indeed, $X = \operatorname{Cvxh}(X) \cap \mathbb{Z}^d$)
classical convex objects	pprox (but weird sets are convex)
connectedness	— (many convex sets are disconnected)
simple connectedness	— (of course no)
intersection property	+
fast convexity test	+ (quickhull+lattice enumeration)

Usual digital convexity adds connectedness

properties	H-convexity	H-convexity + connectedness
simple, generic	+	
classical convex objects	\approx	\approx
connectedness	—	pprox (slices unconnected)
simple connectedness	_	— (unclear)
intersection property	+	—
fast convexity test	+	+

[Minsky, Papert 88], [Kim 82], [Kim, Rosenfeld 82], [Hübler, Klette, Voss89], [Ronse 89], [Eckhardt 01] ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposal: full convexity

properties	<i>H</i> -convexity	H-convexity + connect.	Full convexity
simple, generic	+		+
classical convex objects	\approx	\approx	+
connectedness	—	\approx	+
simple connectedness	—	—	+
intersection property	+	—	— (but)
fast convexity test	+	+	+

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Proposal: full convexity

properties	H-convexity	H-convexity + connect.	Full convexity
simple, generic	+		+
classical convex objects	\approx	\approx	+
connectedness	—	\approx	+
simple connectedness	—	—	+
intersection property	+		— (but)
fast convexity test	+	+	+

Focus of this work

Can we define a fully convex hull operator ? Can we use it to define polyhedral models ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Full convexity for polyhedral models in digital spaces

Context and objectives

What is full convexity ?

Fully convex envelope

An envelope relative to a fully convex set

Polyhedral models

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ のへで

Cubical grid, intersection complex

• cubical grid complex C^d

...

- C_0^d vertices or 0-cells = \mathbb{Z}^d
- C_1^d edges or 1-cells = open unit segment joining 0-cells
- C_2^d faces or 2-cells = open unit square joining 1-cells

• intersection complex of $Y \subset \mathbb{R}^d$

$$ar{\mathcal{C}}_k^d[Y] := \{ c \in \mathcal{C}_k^d, ar{c} \cap Y
eq \emptyset \}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Definition (Full convexity [L. 2021])

A non empty subset $X \subset \mathbb{Z}^d$ is *digitally k-convex* for $0 \leq k \leq d$ whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leq k \leq d$.

Definition (Full convexity [L. 2021])

A non empty subset $X \subset \mathbb{Z}^d$ is *digitally k-convex* for $0 \leqslant k \leqslant d$ whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is *fully convex* if it is digitally k-convex for all $k, 0 \le k \le d$.

X is digitally 0-convex

Definition (Full convexity [L. 2021])

A non empty subset $X \subset \mathbb{Z}^d$ is *digitally k-convex* for $0 \leqslant k \leqslant d$ whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is *fully convex* if it is digitally k-convex for all $k, 0 \le k \le d$.

X is digitally 0-convex, and 1-convex

Definition (Full convexity [L. 2021])

A non empty subset $X \subset \mathbb{Z}^d$ is *digitally k-convex* for $0 \leqslant k \leqslant d$ whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is *fully convex* if it is digitally k-convex for all $k, 0 \le k \le d$.

X is digitally 0-convex, and 1-convex, and 2-convex, hence fully convex.

Definition (Full convexity [L. 2021]) A non empty subset $X \subset \mathbb{Z}^d$ is *digitally k-convex* for $0 \leq k \leq d$ whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is fully convex if it is digitally k-convex for all $k, 0 \le k \le d$.

X is digitally 0-convex

Definition (Full convexity [L. 2021]) A non empty subset $X \subset \mathbb{Z}^d$ is *digitally k-convex* for $0 \leq k \leq d$ whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is *fully convex* if it is digitally k-convex for all $k, 0 \le k \le d$.

X is digitally 0-convex, but neither 1-convex

Definition (Full convexity [L. 2021]) A non empty subset $X \subset \mathbb{Z}^d$ is *digitally k-convex* for $0 \leq k \leq d$ whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is *fully convex* if it is digitally k-convex for all $k, 0 \le k \le d$.

X is digitally 0-convex, but neither 1-convex, nor 2-convex.

Definition (Full convexity [L. 2021]) A non empty subset $X \subset \mathbb{Z}^d$ is *digitally k-convex* for $0 \leq k \leq d$ whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Subset X is fully convex if it is digitally k-convex for all $k, 0 \leq k \leq d$.

Full convexity eliminates too thin digital convex sets in arbitrary dimension.

Some properties of full convexity

Theorem

If the digital set $X \subset \mathbb{Z}^d$ is fully convex, then X is d-connected.

Theorem

If the digital set $X \subset \mathbb{Z}^d$ is fully convex, then the body of its intersection complex is **simply** connected.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem

Verifying if a digital set is fully convex requires one convex hull computation and one lattice polytope enumeration.

Full convexity for polyhedral models in digital spaces

Context and objectives

What is full convexity ?

Fully convex envelope

An envelope relative to a fully convex set

Polyhedral models

・ロ> < 回> < 回> < 回> < 回> < 回

What about a digital convex hull ?

	digital	$convex \ hull$	$\mathrm{Cvxh}_{\mathbb{Z}^d}$	(A) :=	$\operatorname{Cvxh}\left(A\right)\cap\mathbb{Z}^{d}$
--	---------	-----------------	--------------------------------	--------	---

properties	H-convertiv	<i>H</i> -convexity
properties	TT-COnvertey	+ connect.
$\operatorname{Cvxh}_{\mathbb{Z}^d}(A)$ convex	+	_
$\operatorname{Cvxh}_{\mathbb{Z}^d}(A) = A$ (for $A \operatorname{cvx}$)	+	+
idempotence	+	+
fast computation	+	+
increasing	+	+

What about a digital convex hull ?

	digital	convex hull	$\mathrm{Cvxh}_{\mathbb{Z}^d}$	(A) :=	$\operatorname{Cvxh}\left(A\right)\cap\mathbb{Z}^{d}$
--	---------	-------------	--------------------------------	--------	---

properties	H_conversity	H-convexity
properties	TT-COnvertey	+ connect.
$\operatorname{Cvxh}_{\mathbb{Z}^d}(A)$ convex	+	_
$\operatorname{Cvxh}_{\mathbb{Z}^d}(A) = A \text{ (for } A \text{ cvx})$	+	+
idempotence	+	+
fast computation	+	+
increasing	+	+

How can we build fully convex sets from arbitrary $A \subset \mathbb{Z}^d$?

Fully convex hull through intersections ?

- half-spaces are fully convex
- can we intersect support half-spaces to get fully convex hull ?
- intersections of fully convex sets are not fully convex in general

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Local operators $Star(\cdot)$, Skeleton(\cdot), Extrema(\cdot)

For any Y ⊂ R^d, let Star (Y) := C^d[Y] (coincides with the usual star of combinatorial topology)
For any complex K ⊂ C^d, let Skeleton (K) := ∩_{K'⊂K⊂Star(K')} K'
For any complex K ⊂ C^d, let Extrema (K) := Cl(K) ∩ Z^d

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Operator $FC(\cdot)$ and fully convex enveloppe $FC^*(\cdot)$

- Iterative method for computing a fully convex enveloppe
- Let FC(X) := Extrema (Skeleton (Star (Cvxh (X))))
- Iterative composition $FC^n(X) := FC \circ \cdots \circ FC(X)$

• Fully convex envelope of X is $FC^*(X) := \lim_{n \to \infty} FC^n(X)$.

n times

The fully convex enveloppe is well defined

Lemma For any $X \subset \mathbb{Z}^d$, $X \subset FC(X)$.

Lemma

For any finite $X \subset \mathbb{Z}^d$, X and FC(X) have the same bounding box.

Theorem

For any finite digital set $X \subset \mathbb{Z}^d$, there exists a finite n such that $FC^n(X) = FC^{n+1}(X)$, hence $FC^*(X)$ exists and is equal to $FC^n(X)$.

Lemma

If $X \subset \mathbb{Z}^d$ is fully convex, then FC(X) = X. So $FC^*(X) = X$. Proof.

FC(X) = Extrema (Skeleton (Star (Cvxh (X))))

= Extrema (Skeleton (Star (X)))

= Extrema (X)

$$= X$$

(X is assumed fully convex) (Skeleton inverse of star) $(X \subset \mathbb{Z}^d)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Lemma

If $X \subset \mathbb{Z}^d$ is fully convex, then FC(X) = X. So $FC^*(X) = X$. Proof.

FC(X) = Extrema (Skeleton (Star (Cvxh (X)))) $= Extrema (Skeleton (Star (X))) (X ext{ is assumed fully convex})$ $= Extrema (X) (Skeleton ext{ inverse of star})$ $= X (X \subset \mathbb{Z}^d)$

Lemma If $X \subset \mathbb{Z}^d$ is not fully convex, then $X \subsetneq FC(X)$

Lemma

If $X \subset \mathbb{Z}^d$ is fully convex, then FC(X) = X. So $FC^*(X) = X$. Proof.

FC(X) = Extrema (Skeleton (Star (Cvxh (X)))) = Extrema (Skeleton (Star (X))) (X is assumed fully convex) = Extrema (X) (Skeleton inverse of star) $= X (X \subset \mathbb{Z}^d)$

Lemma

If $X \subset \mathbb{Z}^d$ is not fully convex, then $X \subsetneq \operatorname{FC}(X)$

Theorem

 $X \subset \mathbb{Z}^d$ is fully convex if and only if X = FC(X).

Lemma

If $X \subset \mathbb{Z}^d$ is fully convex, then FC(X) = X. So $FC^*(X) = X$. Proof.

 $\begin{aligned} \operatorname{FC}(X) &= \operatorname{Extrema}\left(\operatorname{Skeleton}\left(\operatorname{Star}\left(\operatorname{Cvxh}\left(X\right)\right)\right)\right) \\ &= \operatorname{Extrema}\left(\operatorname{Skeleton}\left(\operatorname{Star}\left(X\right)\right)\right) & (X \text{ is assumed fully convex}) \\ &= \operatorname{Extrema}\left(X\right) & (\operatorname{Skeleton inverse of star}) \\ &= X & (X \subset \mathbb{Z}^d) \end{aligned}$

Lemma

If $X \subset \mathbb{Z}^d$ is not fully convex, then $X \subsetneq \operatorname{FC}(X)$

Theorem

 $X \subset \mathbb{Z}^d$ is fully convex if and only if X = FC(X).

Theorem

For any finite $X \subset \mathbb{Z}^d$, $FC^*(X)$ is fully convex.

Lemma

If $X \subset \mathbb{Z}^d$ is fully convex, then FC(X) = X. So $FC^*(X) = X$. Proof.

FC(X) = Extrema (Skeleton (Star (Cvxh (X))))= Extrema (Skeleton (Star (X))) (X is assumed fully convex) = Extrema (X) (Skeleton inverse of star) = X $(X \subset \mathbb{Z}^d)$

Lemma

If $X \subset \mathbb{Z}^d$ is not fully convex, then $X \subseteq FC(X)$

Theorem

 $X \subset \mathbb{Z}^d$ is fully convex if and only if X = FC(X).

Theorem

For any finite $X \subset \mathbb{Z}^d$, $FC^*(X)$ is fully convex.

Theorem

Theorem Computation of FC(·) is bounded by $O\left(n^{\lfloor \frac{d}{2} \rfloor}\right)$, with n = #(X).

A 3D digital triangle

vertices A = (8, 4, 18), B = (-22, -2, 4), C = (18, -20, -8)(black), edges $FC^*(\{A, B\}), FC^*(\{A, C\}), FC^*(\{B, C\})$ (grey+black) triangle $FC^*(\{A, B, C\})$ (white+grey+black)

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

A generic digital polyhedral model

 combinatorial polyhedron *P* made of *k*-cells (facets, edges, vertices), with incidence relations

- vertices have integer coordinates
- ▶ a digital *k*-cell σ with vertices V_{σ} is $FC^*(V_{\sigma})$

A generic digital polyhedral model

- combinatorial polyhedron *P* made of *k*-cells (facets, edges, vertices), with incidence relations
- vertices have integer coordinates
- a digital k-cell σ with vertices V_{σ} is $FC^*(V_{\sigma})$

But no control on the thickness of digital facets.

Is the fully convex enveloppe a hull operator ?

properties	fully convex enveloppe
$FC^*(A)$ convex	+
$FC^*(A) = A$ (for A fully cvx)	+
idempotence	+
fast computation	pprox ($#$ iterations)
increasing	—

Is the fully convex enveloppe a hull operator ?

properties	fully convex enveloppe
$FC^*(A)$ convex	+
$FC^*(A) = A$ (for A fully cvx)	+
idempotence	+
fast computation	pprox ($#$ iterations)
increasing	—

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Is the fully convex enveloppe a hull operator ?

properties	fully convex enveloppe
$FC^*(A)$ convex	+
$FC^*(A) = A$ (for A fully cvx)	+
idempotence	+
fast computation	pprox ($#$ iterations)
increasing	—

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Full convexity for polyhedral models in digital spaces

Context and objectives

What is full convexity ?

Fully convex envelope

An envelope relative to a fully convex set

Polyhedral models

・ロ> < 回> < 回> < 回> < 回> < 回

A relative fully convex enveloppe

For
$$X \subset Y$$
, let $FC_{|Y}(X) := FC(X) \cap Y$

►
$$\operatorname{FC}_{|Y}^{n}(X) := \operatorname{FC}_{|Y} \circ \cdots \circ \operatorname{FC}_{|Y}(X)$$
, composed *n* times

► Fully convex envelope of X relative to Y is $FC^*_{|Y}(X) := \lim_{n \to \infty} FC^n_{|Y}(X)$

• we have
$$\operatorname{FC}^*(X) = \operatorname{FC}^*_{|\mathbb{Z}^d}(X)$$

Theorem

Let $X \subset \mathbb{Z}^d$ and $Y \subset \mathbb{Z}^d$ fully convex. Then $\operatorname{FC}^*_{|Y}(X \cap Y)$ is fully convex and is included in Y.

Intersections of fully convex sets

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Full convexity for polyhedral models in digital spaces

Context and objectives

What is full convexity ?

Fully convex envelope

An envelope relative to a fully convex set

Polyhedral models

・ロ> < 回> < 回> < 回> < 回> < 回

Polyhedral models (here 3D)

- combinatorial polyhedron *P* made of *k*-cells (facets, edges, vertices), vertices are simply digital points.
- thick enough arithmetic planes are fully convex
- use relative full convexity for facets
- $T \subset \mathbb{Z}^3$ made of coplanar points, $P_1(T)$ (resp. $P_{\infty}(T)$) is its median standard (resp. naive) plane.

Definition (standard digital polyhedron)

 \mathcal{P}_1^* is the collection of digital cells that are subsets of \mathbb{Z}^d :

- if σ is a facet of \mathcal{P} with vertices $V(\sigma)$, then σ_1^* is a cell of \mathcal{P}_1^* with $\sigma_1^* := \mathrm{FC}^*_{|\mathcal{P}_1(V(\sigma))}(V(\sigma)).$
- if τ is an edge, then it has as many geometric realizations as incident facets σ: (τ, σ)^{*}₁ := FC^{*}_{|σ^{*}₁} (V(τ)).

Definition (naive digital polyhedron)

 \mathcal{P}^*_∞ defined similarly by replacing 1 with ∞ above.

Standard and naive 3D triangle

Theorem All digital cells are fully convex.

standard triangle \mathcal{T}_1^* 985 points naive triangle \mathcal{T}^*_∞ 567 points

Polyhedron \mathcal{T} with vertices $A = (8, 4, 18), B = (-22, -2, 4), C = (18, -20, -8), \text{ edges } \{(A, B), (A, C), (B, C)\}$ and one facet $\{(A, B, C)\}.$

Generic/standard/naive digital polyhedron

イロト イロト イヨト イヨン

Generic/standard/naive digital polyhedron

Tri-mesh \mathcal{T} , planar $\sharp \mathcal{T}_1^* = 68603$ $\sharp \mathcal{T}_1^* = 275931$ faces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Generic/standard/naive digital polyhedron

うしん 同一人用 人用 人間 イロ・

Full convexity packages in DGtal

dD, tangency, envelope

Local shape analysis, geodesics

- most of full convexity and applications implemented in DGtal
- open source library, efficient efficient generic C++
- a nice tutorial yesterday !

Conclusion

- an envelope operator for building fully convex set
- ▶ a new characterization of full convexity $X = FC^*(X)$
- a relative envelope operator
 - induces asymmetric intersections of fully convex sets

- allows fully convex sets within planes
- polyhedral models with facets that are pieces of planes

Future works

Theoretical side

- increasingness of enveloppe still under study
- redefine intersection of fully convex digital sets
- new characterization of full convexity
- arithmetic planes without arithmetic ?

Algorithmic and implementation side

- fast cell and lattice point enumeration within polytopes
- faster full convexity tests
- bound number of iterations of $FC^*(\cdot)$

Explore its natural applications

- we know how to pass from a polyhedron to a digital polyhedron
- how can we do the other way around ? Optimal decomposition into fully convex facets ?