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Full convexity for polyhedral models in digital spaces

Context and objectives

What is full convexity ?
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An envelope relative to a fully convex set

Polyhedral models



Why digital convexity ?

▶ no (infinitesimal) differential geometry for digital shapes
▶ convexity: a fundamental tool to analyze the geometry of shapes
▶ identifies convex/concave/flat/saddle regions
▶ gives locally its piecewise linear geometry
▶ facets give normal estimations

▶ convexity = foundation of convex analysis, linear programming
▶ digital convexity = foundation of digital convex analysis, integer

linear programming ?
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Natural digital convexity is not satisfactory

Definition (Natural digital convexity (or H-convexity))
X ⊂ Zd is digitally convex iff Cvxh (X ) ∩ Zd = X

= ⇒ convex !

X Cvxh (X ) ∩ Zd

Digital convexity does not imply digital connectedness !



Summary of digital convexity properties

properties H-convexity
simple, generic + (indeed, X = Cvxh (X ) ∩ Zd)

classical convex objects ≈ (but weird sets are convex)
connectedness − (many convex sets are disconnected)

simple connectedness − (of course no)
intersection property +
fast convexity test + (quickhull+lattice enumeration)



Usual digital convexity adds connectedness

properties H-convexity H-convexity
+ connectedness

simple, generic + −
classical convex objects ≈ ≈

connectedness − ≈ (slices unconnected)
simple connectedness − − (unclear)
intersection property + −
fast convexity test + +

[Minsky, Papert 88], [Kim 82], [Kim, Rosenfeld 82], [Hübler, Klette, Voss89], [Ronse 89],
[Eckhardt 01] . . .



Proposal: full convexity

properties H-convexity H-convexity
+ connect.

Full convexity

simple, generic + − +
classical convex objects ≈ ≈ +

connectedness − ≈ +
simple connectedness − − +
intersection property + − − (but...)
fast convexity test + + +

Focus of this work
Can we define a fully convex hull operator ?
Can we use it to define polyhedral models ?
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Cubical grid, intersection complex

▶ cubical grid complex Cd

▶ Cd
0 vertices or 0-cells = Zd

▶ Cd
1 edges or 1-cells = open unit segment joining 0-cells

▶ Cd
2 faces or 2-cells = open unit square joining 1-cells

▶ . . .
▶ intersection complex of Y ⊂ Rd

C̄d
k [Y ] := {c ∈ Cd

k , c̄ ∩ Y ̸= ∅}

Y cells C̄d
0 [Y ], C̄d

1 [Y ], C̄d
2 [Y ]



What is full convexity ?

Definition (Full convexity [L. 2021] )
A non empty subset X ⊂ Zd is digitally k-convex for 0 ⩽ k ⩽ d whenever

C̄d
k [X ] = C̄d

k [Cvxh (X )]. (1)

Subset X is fully convex if it is digitally k-convex for all k, 0 ⩽ k ⩽ d .

=

C̄d
0 [X ] C̄d

0 [Cvxh (X )]
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What is full convexity ?

Definition (Full convexity [L. 2021] )
A non empty subset X ⊂ Zd is digitally k-convex for 0 ⩽ k ⩽ d whenever

C̄d
k [X ] = C̄d

k [Cvxh (X )]. (1)

Subset X is fully convex if it is digitally k-convex for all k, 0 ⩽ k ⩽ d .

Full convexity eliminates too thin digital convex sets in arbitrary
dimension.



Some properties of full convexity

Theorem
If the digital set X ⊂ Zd is fully convex, then X is d-connected.

Theorem
If the digital set X ⊂ Zd is fully convex, then the body of its intersection
complex is simply connected.

Theorem
Verifying if a digital set is fully convex requires one convex hull
computation and one lattice polytope enumeration.



Full convexity for polyhedral models in digital spaces

Context and objectives

What is full convexity ?

Fully convex envelope

An envelope relative to a fully convex set

Polyhedral models



What about a digital convex hull ?

▶ digital convex hull CvxhZd (A) := Cvxh (A) ∩ Zd

properties H-convexity H-convexity
+ connect.

CvxhZd (A) convex + −
CvxhZd (A) = A (for A cvx) + +

idempotence + +
fast computation + +

increasing + +

How can we build fully convex sets from arbitrary A ⊂ Zd ?
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Fully convex hull through intersections ?

▶ half-spaces are fully convex
▶ can we intersect support half-spaces to get fully convex hull ?
▶ intersections of fully convex sets are not fully convex in general

A B A ∩ B



Local operators Star (·) , Skeleton (·) ,Extrema (·)

Y Star (Y ) = C̄d
0 [Y ] ∪ C̄d

1 [Y ] ∪ C̄d
2 [Y ]

K K ′ = Skeleton (K ) Extrema (K ′)

▶ For any Y ⊂ Rd , let Star (Y ) := C̄d [Y ]
(coincides with the usual star of combinatorial topology)

▶ For any complex K ⊂ Cd , let Skeleton (K ) :=
⋂

K ′⊂K⊂Star(K ′) K
′

▶ For any complex K ⊂ Cd , let Extrema (K ) := Cl (K ) ∩ Zd



Operator FC(·) and fully convex enveloppe FC∗(·)
▶ Iterative method for computing a fully convex enveloppe
▶ Let FC(X ) := Extrema (Skeleton (Star (Cvxh (X ))))

▶ Iterative composition FCn(X ) := FC ◦ · · · ◦ FC︸ ︷︷ ︸
n times

(X )

▶ Fully convex envelope of X is FC∗(X ) := limn→∞ FCn(X ).

input X , Y := Cvxh (X ) Star (Y ), Skeleton (Star (Y )) X ′ = FC(X )

input X ′, Y ′ := Cvxh
(
X ′) Star

(
Y ′), Skeleton

(
Star

(
Y ′)) X ′′ = FC(X ′) = FC2(X )



The fully convex enveloppe is well defined

Lemma
For any X ⊂ Zd , X ⊂ FC(X ).

Lemma
For any finite X ⊂ Zd , X and FC(X ) have the same bounding box.

Theorem
For any finite digital set X ⊂ Zd , there exists a finite n such that
FCn(X ) = FCn+1(X ), hence FC∗(X ) exists and is equal to FCn(X ).



Envelope FC∗(·) acts as a fully convex hull operator
Lemma
If X ⊂ Zd is fully convex, then FC(X ) = X . So FC∗(X ) = X .
Proof.

FC(X ) = Extrema (Skeleton (Star (Cvxh (X ))))

= Extrema (Skeleton (Star (X ))) (X is assumed fully convex)

= Extrema (X ) (Skeleton inverse of star)

= X (X ⊂ Zd)

Lemma
If X ⊂ Zd is not fully convex, then X ⊊ FC(X )

Theorem
X ⊂ Zd is fully convex if and only if X = FC (X ).

Theorem
For any finite X ⊂ Zd , FC∗(X ) is fully convex.

Theorem
Computation of FC(·) is bounded by O

(
n⌊

d
2 ⌋
)
, with n = #(X ).
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A 3D digital triangle

vertices A = (8, 4, 18),B = (−22,−2, 4),C = (18,−20,−8)
(black),

edges FC∗({A,B}), FC∗({A,C}), FC∗({B,C}) (grey+black)
triangle FC∗({A,B,C}) (white+grey+black)



A generic digital polyhedral model

Quad-mesh Q, non pla-
nar faces

♯Q∗ = 81044 ♯Q∗ = 373225

▶ combinatorial polyhedron P made of k-cells (facets, edges, vertices),
with incidence relations

▶ vertices have integer coordinates
▶ a digital k-cell σ with vertices Vσ is FC∗(Vσ)

But no control on the thickness of digital facets.
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Is the fully convex enveloppe a hull operator ?

properties fully convex enveloppe
FC∗(A) convex +

FC∗(A) = A (for A fully cvx) +
idempotence +

fast computation ≈ ( # iterations )
increasing −
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A relative fully convex enveloppe

▶ For X ⊂ Y , let FC|Y (X ) := FC(X ) ∩ Y

▶ FCn
|Y (X ) := FC|Y ◦ · · · ◦ FC|Y (X ), composed n times

▶ Fully convex envelope of X relative to Y is
FC∗

|Y (X ) := limn→∞ FCn
|Y (X )

▶ we have FC∗(X ) = FC∗
|Zd (X )

Theorem
Let X ⊂ Zd and Y ⊂ Zd fully convex.
Then FC∗

|Y (X ∩ Y ) is fully convex and is included in Y .



Intersections of fully convex sets

X ,Y Skeleton(Star(Cvxh (X ∩ Y )))

FC∗
|Y (X ∩ Y ) FC∗

|X (X ∩ Y )
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Polyhedral models (here 3D)

▶ combinatorial polyhedron P made of k-cells (facets, edges, vertices),
vertices are simply digital points.

▶ thick enough arithmetic planes are fully convex
▶ use relative full convexity for facets
▶ T ⊂ Z3 made of coplanar points,

P1(T ) (resp. P∞(T )) is its median standard (resp. naive) plane.

Definition (standard digital polyhedron)
P∗

1 is the collection of digital cells that are subsets of Zd :
• if σ is a facet of P with vertices V (σ), then σ∗

1 is a cell of P∗
1 with

σ∗
1 := FC∗

|P1(V (σ)) (V (σ)).
• if τ is an edge, then it has as many geometric realizations as

incident facets σ: (τ, σ)∗1 := FC∗
|σ∗

1
(V (τ)).

Definition (naive digital polyhedron)
P∗
∞ defined similarly by replacing 1 with ∞ above.



Standard and naive 3D triangle

Theorem
All digital cells are fully convex.

standard triangle T ∗
1 naive triangle T ∗

∞
985 points 567 points

Polyhedron T with vertices A = (8, 4, 18), B = (−22,−2, 4),
C = (18,−20,−8), edges {(A,B), (A,C), (B,C)} and one facet {(A,B,C)}.



Generic/standard/naive digital polyhedron

Quad-mesh Q, non pla-
nar faces

♯Q∗ = 81044 ♯Q∗ = 373225



Generic/standard/naive digital polyhedron

Tri-mesh T , planar
faces

♯T ∗
1 = 68603 ♯T ∗

1 = 275931



Generic/standard/naive digital polyhedron

Tri-mesh T , planar
faces

♯T ∗
∞ = 46639 ♯T ∗

∞ = 182451



Full convexity packages in DGtal

dgtal.org

dD convex hull and De-
launay triangulation

Full convexity in
dD, tangency,
envelope

Local shape analysis,
geodesics

▶ most of full convexity and applications implemented in DGtal
▶ open source library, efficient efficient generic C++
▶ a nice tutorial yesterday !

dgtal.org


Conclusion

▶ an envelope operator for building fully convex set
▶ a new characterization of full convexity X = FC∗(X )

▶ a relative envelope operator
▶ induces asymmetric intersections of fully convex sets
▶ allows fully convex sets within planes

▶ polyhedral models with facets that are pieces of planes



Future works

Theoretical side
▶ increasingness of enveloppe still under study
▶ redefine intersection of fully convex digital sets
▶ new characterization of full convexity
▶ arithmetic planes without arithmetic ?

Algorithmic and implementation side
▶ fast cell and lattice point enumeration within polytopes
▶ faster full convexity tests
▶ bound number of iterations of FC∗(·)

Explore its natural applications
▶ we know how to pass from a polyhedron to a digital polyhedron
▶ how can we do the other way around ? Optimal decomposition into

fully convex facets ?
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