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Abstrat

Disrete geometri estimators approah geometri quantities on digitized

shapes without any knowledge of the ontinuous shape. A lassial yet

di�ult problem is to show that an estimator asymptotially onverges

toward the true geometri quantity as the resolution inreases. We study

here, on Convex Digital Polygons, the onvergene of loal estimators

based on Digital Straight Segment (DSS). This problem is losely linked

to the asymptoti growth of maximal DSS, for whih we show bounds both

about their number and sizes. These results not only give better insights

about digitized urves but indiate that urvature estimators based on

loal DSS reognition are not likely to onverge. We indeed invalidate a

onjeture whih was essential in the only known onvergene theorem of

a disrete urvature estimator. The proof involves results from arithmeti

properties of digital lines, digital onvexity, ombinatoris, ontinued fra-

tions and random polytopes.

1 Introdution

Estimating geometri features of shapes or urves solely on their digitization

is a lassial problem in image analysis and pattern reognition. Some of the

geometri features are global to the urve: area, perimeter, moments. Others

are loal: tangents, normals, urvature. Algorithms that performs this task on

digitized objets are alled disrete geometri estimators. In the following, any

algorithm estimating a loal geometri quantity within a �xed size neighborhood

will be alled loal disrete geometri estimator. We hoose to separate them

from loal adaptive disrete geometri estimators whose omputation windows
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may depend (in size) on the resolution. In this paper we onsider the Gauss

digitization as the digitization proess. An interesting property these estimators

should have is to onverge towards the ontinuous geometri measure as the dig-

itization resolution inreases. This property is also alled multi-grid onvergene

[16℄. However, few estimators have been proved to be multi-grid onvergent. In

all works, shapes are generally supposed to have a smooth boundary (at least

twie di�erentiable) and either to be onvex or to have a �nite number of in-

�exion points. The shape perimeter estimation has for instane been takled in

[18℄. It proved the onvergene of a perimeter estimator based on urve segmen-

tation by maximal DSS. The speed of onvergene of several length estimators

has also been studied in [5℄. Klette and �uni¢ [17℄ survey results about the on-

vergene (and the speed of onvergene) of several global geometri estimators.

They show that disrete moments onverge toward ontinuous moments. As

far as we know, only C÷urjolly [4℄ has initiated works to establish the possible

onvergene of loal adaptive estimators of tangents and urvature. He shows

that estimators based on digital straight segment (DSS) reognition may on-

verge if the length of DSS on the digitized urve grows as fast as O(m
1
2 ) as the

digitization step

1
m

tends toward 0. Determining the asymptoti growth of DSS

along digitized urve is thus ruial for establishing the asymptoti behavior of

loal adaptive geometri estimators.

This is preisely the objetive of this paper, and is ahieved with Theo-

rem 5.1. To do so, we relate two notions usually disonneted when studying

objets in the digital plane: maximal segments de�ned on digital urves and

edges of onvex digital polygons. These notions play omplementary roles when

estimating geometri parameters on digital objets, when determining its on-

vexity or when observing asymptoti properties of �ner and �ner shape digiti-

zations.

Maximal segments of a digital urve are DSS not stritly inluded in any

other DSS of the urve. E�ient algorithms have been proposed to extrat

them and ompute their harateristis [8℄ as well as optimal algorithms to re-

over the whole set of maximal segments. They are useful when estimating

the loal geometry of digital urves like tangent diretion or urvature [10, 20℄.

Through them digital urves an be polygonized into the minimum number of

straight segments [11℄. Maximal segments an be used to deide whether or not

a polyomino is onvex [22℄. As stated above, when observed on objet digitiza-

tions, the growth rate of their length indiates for some geometri estimators if

they onverge toward the ontinuous geometri quantity and at whih rate [4℄.

On the other hand, a Convex Digital Polygon (CDP) is a set of lattie points

whose onvex hull has the same digitization. Its verties are de�ned as its

minimum subset whose onvex hull has same digitization, and its edges are DSS

joining two onseutive verties. One haraterization of digital onvexity for a

set of lattie points is exatly to be a CDP [15℄. Sine CDP are digitizations of

onvex shapes, their asymptoti properties when digitized with �ner and �ner

grid have also been studied. For instane, asymptoti bounds on the number

and length of edges have been exhibited for Gauss digitizations of smooth onvex

shapes [1℄, and extended to nD in [2℄. Interestingly, these bounds are related to

random polytopes and have appliations in linear integer programming. Along

the same lines, other works [17℄ give tight upper bounds on the number and

length of edges for CDPs insribed in a grid square (a CDP is alled lattie
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onvex polygon in this work).

Here we take a spei� interest in the maximal segments de�ned on the

boundary of a CDP. Intuitively, these maximal segments should have a lose link

with the edges of the CDP: the latter are indeed digital straight line segment, but

are not generally maximal. However few results an be found in the literature.

To our knowledge the only signi�ant results are in [7, 9℄: a maximal segment

may absorb at most O(log m) edges for CDP in a m×m grid square; the length

of the smallest maximal segment is upper bounded by O(m
1
3 log m). This upper

bound had onsequenes on a digital urvature estimator based on irumsribed

irle omputation [6℄, whih was thought to be multi-grid onvergent and whose

performanes are among the best ones in pratie at low resolution. However,

as stated above, the proof of the onvergene requires that the growth of the

maximal segments follow O(m
1
2 ) [4℄. The onjeture was thus disproved on

some points of the urve, although it was still possible that the estimator be

onvergent on a subset of the urve with non-zero measure.

In this work, we go further in establishing the links between maximal seg-

ments and edges of CDP. Most of the new results are obtained by using well

known reursive ombinatori representation of a digital straight segment alled

pattern.

We �rst present the main de�nitions and used tools in Setion 2. The notion

of pattern is given in Setion 2.4. We then establish links between maximal

segments and CDP (Setion 3). The main results of this setion are upper and

lower bound on the number of maximal segment. We obtain, in Setion 4, the

asymptoti upper and lower bounds for the average length of maximal segments

along a CDP enlosed in a grid of size m × m. We then study the asymptoti

of the previous results with respet to inreasing m in setion 5. We onlude

Setion 5 by a refutation of the hypothesis used in the previously mentioned

urvature estimator onvergene proof. We �nally present some onlusions

and perspetives in Setion 6.

2 De�nitions and tools

We now preisely detail in this part the main objetives of this paper and intro-

due the outline of our proof. To begin, we reall the digitization proess used

in this paper and its assoiated digital boundary. We pursue with the preise

introdution of the Convex Digital Polygon (CDP) followed by the notions of

standard lines and digital straight segments. The result of Balog and Bárány

[1℄ is a entral tool in our study and we present it as well as a sketh of its use

in our proof. All along the paper, when results are announed without proof we

always refer to the tehnial report [9℄ for full proofs.

2.1 Digitization and digital urve

Let S be a subset of R2
, its Gauss digitization is de�ned as D(S) = S ∩Z2

. We

also de�ne the dilatation of S by a real fator r as r ·S. The Gauss digitization
at resolution m is then de�ned as: Dm(S) = D(m · S). Thus, the onsidered

digitized objets are subsets of Z2
. We preise that this digitization is equivalent

to interseting S with

1
m

Z × 1
m

Z up to a sale fator.
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4-onnetedness de�nes the adjaeny relations on digital objets, whih

means that the neighborhood of a point in the digital plane is omposed of its

up and down, and left and right neighbors. Among the 4-onneted subsets

of Z2
, we fous on onvex digital polygons whih are also alled lattie onvex

polygons [25℄.

De�nition 2.1. A onvex digital polygon (CDP) Γ is a subset of the digital

plane with a single 4-onneted omponent equal to the digitization of its onvex

hull, i.e. Γ = D(conv(Γ)). Its verties (Vi)i=1..e form the minimal subset for

whih Γ = D(conv(V1, . . . , Ve)).

The asymptoti study presented later-on in this paper requires the study of

Gauss digitizations of onvex shapes with C3
boundary and positive urvature.

We show that for resolutions larger than a threshold whih depends on the

onsidered shape, the Gauss digitization for suh resolutions always brings a

onvex digital polygon. This rely on two lemmas whom proofs are presented in

appendix:

Lemma 2.2. Let S be a onvex subset of R2
then D(S) = D(conv(D(S)))

Lemma 2.3. For a given S where S is a plane onvex body with C3
boundary

and positive urvature, there exists mS suh that for all m ≥ mS, Dm(S) is

4-onneted.

For large enough resolution, the Gauss digitizations of onvex shapes with

C3
boundary and positive urvature have a single 4-onneted omponent and

are equal to the digitization of the onvex hull of their Gauss digitization, they

are thus by de�nition onvex digital polygons.

We an now study the digital boundary of onvex digital polygons onsider-

ing the Grid Cell Model with 2-ells (see [16℄ Chap. 2). In this model, eah point

of a digitized objet is onsidered as a losed square whom side is equal to 1. Its

topologial border de�nes a Jordan urve in R2
. Considering the intersetion of

this urve with (Z+ 1
2 )× (Z+ 1

2 ), we obtain the set of elements onstituting the

digital boundary of our digitized objet. This boundary is denoted by C. We

number the points of C inrementally as we visit them when moving lok-wise

along the topologial border of the digitized objet. Thus eah point on the

digital boundary has one predeessor and one suessor. The points of the digi-

tal boundary are noted (Ck) and a set of suessive points ordered inreasingly

from index i to j will be onveniently denoted by [CiCj ] when no ambiguities are
raised. Those notations are pitured on Fig. 1. Consequently in the following

we restrit our study to the geometry of suh 4-onneted digital path.

2.2 Digital Boundary Of Convex Digital Polygons

We have de�ned onvex digital polygons as partiular subsets of Z2
and their

usual features are de�ned from those points, namely verties and edges. We

an onsider the verties and edges on the digital boundary of a CDP as if they

were on the CDP itself. Interestingly, the number of edges and verties on a

CDP and the number of edges and verties on its digital boundary only di�er

by a onstant. Indeed, all edges on the CDP whose diretion belongs to ]0, π
2 [

(when edges are oriented lok-wise) belong to the digital boundary of the CDP

when shifted with the vetor (− 1
2 , 1

2 ) (see Fig. 2). Other edges are obtained
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Figure 1: A digitized objet onsidering the Grid Cell Model with 2-ells (left)

and its digital boundary C (right).

digital boundary

a digital edge

an edge

Figure 2: A onvex digital polygon, its edges and a digital edge.

symmetrially depending on their diretion. As a result, if we denote by ne(Γ)
the number of edges on the CDP, its digital boundary has at most ne(Γ) + 4
edges and at least ne(Γ).

As we onsider asymptoti studies where ne(Γ) inreases and tend toward

in�nity, we denote by ne(Γ) these two quantities. Similarly, we denote the

perimeter by Per(Γ).
An edge is the Eulidean segment joining two onseutive verties, and a

digital edge is the digital shortest 4-onneted digital segment joining two on-

seutive verties. It is lear that we have as many edges as digital edges and as

verties.

2.3 Standard line, digital straight segment, maximal seg-

ments

De�nition 2.4. (Réveillès [23℄) The set of points (x, y) of the digital plane

verifying µ ≤ ax − by < µ + |a| + |b|, with a, b and µ integer numbers, is alled

the standard line with slope a/b and shift µ.

The standard lines are the 4-onneted disrete lines. The quantity ax − by
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is alled the remainder of the line. The points whose remainder is µ (resp.

µ + |a|+ |b| − 1) are alled upper (resp. lower) leaning points. Finite onneted

portions of digital lines de�ne digital straight segment.

De�nition 2.5. A set of suessive points [CiCj ] of C is a digital straight

segment (DSS) i� there exists a standard line D(a, b, µ) ontaining them. The

prediate �[CiCj ] is a DSS� is denoted by S(i, j).

The prinipal upper and lower leaning points are de�ned as those with ex-

tremal x values. The �rst index j, i ≤ j, suh that S(i, j) and ¬S(i, j + 1) is
alled the front of i. The map assoiating any i to its front is denoted by F .

Symmetrially, the �rst index i suh that S(i, j) and ¬S(i − 1, j) is alled the

bak of j and the orresponding mapping is denoted by B. Maximal segments

are de�ned as those DSS not stritly inluded in another DSS.

These relations give the four equivalent haraterisations of maximal seg-

ments:

De�nition 2.6. Any set of points [CiCj ] is alled a maximal segment i� any

of the following equivalent haraterizations holds: (1) S(i, j) and ¬S(i, j + 1)
and ¬S(i−1, j), (2) B(j) = i and F (i) = j, (3) ∃k, i = B(k) and j = F (B(k)),
(4) ∃k′, i = B(F (k′)) and j = F (k′).

As a orollary, any DSS [CiCj ] (hene any point) belongs to at least one

maximal segment. If Γ is a onvex digital polygon, We will denote by nMS(Γ),
the number of maximal segment on its digital boundary.

Most of the results demonstrated here are diretly transposable to 8-onneted

urves sine there is a natural bijetive transformation between standard and

naive digital lines. In the paper, all the reasoning is made in the �rst otant,

but it extends naturally to the whole digital plane.

2.4 Use of Balog and Bárány's theorem

The original theorem published in [1℄ deals with the onvex hull of Gauss digiti-

zations of plane onvex body with C3
boundary and positive urvature for large

resolutions. Using Lemma 2.2 and Lemma 2.3 we omplete it with the notion

of CDP as follows:

Theorem 2.7. (Adapted from Balog, Bárány [1℄) If S is a plane onvex body

with C3
boundary and positive urvature then Dm(S) is a CDP for a big enough

m and its number of edges or verties asymptotially follows

c1(S)m
2
3 ≤ ne(Dm(S)) ≤ c2(S)m

2
3

where the onstants c1(S) and c2(S) depend on extremal bounds of the urvatures

along S. Hene for a dis c1 and c2 are absolute onstants.

Theorem 2.7 is used in the sequel as follows: we build lower and upper

bounds of the number of maximal segments built on the boundary of a CDP.

The upper bound is given by Theorem 3.11 and depends only on the number

of edges of the CDP. The lower bound is given by Theorem 3.15 and relies on

both the number of edges and the resolution of the digitization. Both bounds

are then used in onjuntion with Theorem 2.7 to give asymptoti bounds on

the number of maximal segments on the boundary of a CDP, with respet to
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the resolution of the digitization grid. For the length of maximal segments, we

use the same strategy. Upper bound for the length is given by Proposition 4.3

and depends only on the perimeter of the CDP. The lower bound also depends

on the perimeter of the CDP. Sine the perimeter an be related to the grid

size m, we obtain in Theorem 5.1 the asymptoti law of the average length of

maximal segments along the boundary of the CDP. Those bounds both depend

on m and the onstants appearing in Theorem 2.7.

2.5 Reursive deomposition of DSS

We here reall a few properties about patterns omposing DSS and their lose

relations with ontinued frations. They onstitute a powerful tool to desribe

disrete lines with rational slopes [3, 13℄. W.l.o.g. all de�nitions and propo-

sitions stated below hold for standard lines and DSS with slopes in the �rst

otant (e.g.

a
b
with 0 ≤ a ≤ b). In the �rst otant, only two Freeman moves are

possible:

• 0 : one step to the right,

• 1 : one step up.

De�nition 2.8. Given a standard line (a, b, µ), we all pattern of harateris-

tis (a, b) the suession of Freeman moves between any two onseutive upper

leaning points. The Freeman moves de�ned between any two onseutive lower

leaning points is the previous word read from bak to front and is alled the

reversed pattern.

A pattern (a, b) embedded anywhere in the digital plane is obviously a DSS

(a, b, µ) for some µ. Sine a DSS has at least either two upper or two lower

leaning points, a DSS (a, b, µ) ontains at least one pattern or one reversed

pattern of harateristis (a, b).
Its is important to note that if a digital straight segment of harateristis

(a, b, µ) ontains δ pattern (a, b) and δ′ reversed-pattern (a, b) then it has exatly
δ + 1 upper leaning points and δ′ + 1 lower leaning points. Moreover, we have

δ′ = δ±1. However if a digital straight segment has �ve leaning point it may be

onstituted of two patterns and one reversed-pattern or two reversed-patterns

and one pattern. As a result the number of leaning points of a digital straight

segment annot preisely desribe the number of patterns or reversed-patterns.

Even if the arithmeti approah is a powerful tool for digital straight segment

reognition, other approah may reveal useful to get analyti properties. We

here reall one of those approahes whih is onneted to ontinued frations.

There exists reursive transformations for omputing the pattern of a stan-

dard line from the simple ontinued fration of its slope (see [3℄, [25℄ Chap. 4

and [16℄ Chap. 9). We hoose to fous on Berstel approah, whih better suits

our purpose.

A ontinued fration is an expression of the form:

z = 0 +
1

u1 +
1

. . . +
1

un + . . .
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onveniently denoted [0, u1, . . . , un, . . .]. The ui are alled elements or partial

oe�ient and the ontinued fration formed with the k + 1 �rst partial oe�-

ient is said to be a k-th onvergent of z and is a rational number denoted by

zk. The depth of a k-th onvergent equals k. We onveniently denote pk the

numerator (resp. qk the denominator) of a k-th onvergent.

We reall a few more relations regarding the way onvergents are related and

whih will be used later on in this paper:

∀k ≥ 1 pkqk−1 − pk−1qk = (−1)k+1
(1)

p0 = 0 p−1 = 1 ∀k ≥ 1 pk = ukpk−1 + pk−2 (2)

q0 = 1 q−1 = 0 ∀k ≥ 1 qk = ukqk−1 + qk−2 (3)

z0 < z2 < . . . < z2i < . . . < z < . . . < z2i+1 < . . . < z3 < z1 (4)

Continued frations an be �nite or in�nite, we fous on the ase of rational

slopes of lines in the �rst otant, that is �nite ontinued frations between 0 and

1. Then for eah i, ui is a stritly positive integer. In order to have a unique

writing we onsider that the last partial oe�ient is greater or equal to two;

exept for slope 1 = [0, 1].
Let us now explain how to ompute the pattern assoiated with a rational

slope z in the �rst otant.

Consider E a mapping from the set of positive rational number smaller

than one onto the Freeman-move's words. As we only onsider slopes in the

�rst otant, we only onsider horizontal steps (denoted by 0) and vertial steps

(denoted by 1).
Let us de�ne this mapping as: E(z0) = 0, E(z1) = 0u11 and others values

are expressed reursively:

E(z2i+1) = E(z2i)
u2i+1E(z2i−1) (5)

E(z2i) = E(z2i−2)E(z2i−1)
u2i

(6)

It has been shown that this mapping onstruts the pattern (a, b) for any

rationnal slope z = a
b
. Fig. 3 exempli�es the onstrution of an odd pattern

using the mapping E.

The Minkowski L1
length of E(zk) equals pk + qk and an be expressed

reursively using Eq. (2) and (3).

Eq. (4) spei�es that even onvergents are approximations by lower values

and odd onvergents are approximations by upper values. It indeed explains

that an even pattern zeven and an odd pattern zodd are ombined to form a

more omplex pattern z, the slopes verify zeven < z < zodd.

There exists other equivalent relations for omputing numerators and de-

nominators (see [25℄ Chap. 4 and [16℄ Chap. 9) and the splitting formula an

be used to obtain patterns. However the splitting formula uses two k-th on-

vergents with the same depth, whereas we here use two k-th onvergents of

onseutive depths.

For onveniene reasons we say that a slope has an even (resp. odd) depth

when its development in ontinued frations has an even (resp. odd) depth.
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Figure 3: A digital straight segment of harateristis (10, 23, 0) with an odd

depth slope, taken between origin and its seond lower leaning point.

3 Convex digital polygons and number of maxi-

mal digital straight segments

3.1 Introdution

We now study digital straight segments and patterns lying on the digital ontour

of Convex Digital Polygons (CDP). More preisely, we establish some relations

between maximal segments and digital edges of onvex shape digitizations.

From haraterizations of disrete onvexity [15℄, we obtain the following

property.

Proposition 3.1. Eah digital edge of a CDP is either a pattern or a suession

of the same pattern whose slope is the one of the edge. In other words, both

verties are upper leaning points of the digital edge.

Proof. Points between two suessive verties on the digital urve are always

below the real segment linking the two verties. From [15℄, [ViVi+1] is a DSS.

Thus the real line linking Vi and Vi+1 is the upper leaning line of the DSS and

both verties are upper leaning points. �

Maximal segments are DSS: between any two upper (resp. lower) leaning

points lays at least a lower (resp. upper) leaning point. The slope of a maximal

segment is then de�ned by two onseutive upper and/or lower leaning points.

Digital edges are patterns and their verties are upper leaning points (from

Proposition 3.1). Thus, verties may be upper leaning points but never lower

leaning points of maximal segments. Sine a digital edge is a DSS, we get:

Lemma 3.2. A maximal segment annot be stritly ontained into a digital

edge.

Thus, a digital edge is either a maximal segment or a strit subset of a

maximal DSS. Sine there is one edge assoiated to one digital edge, the only

spei� ase is when a digital edge is stritly inluded in a maximal segment.

As we have seen, the verties of a digital edge are upper leaning points of the
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digital edge but not neessarily upper leaning points of the maximal segment

ontaining the digital edge. To see what happens on the boundary of the CDP,

we notie that a maximal segment is de�ned by at least three leaning points.

They are two ases: ULU orresponding to two upper and one lower leaning

points and LUL orresponding to two lower and one upper leaning points. If

a maximal segment ontains stritly more than three leaning points, it has at

least two upper leaning points and we say that it veri�es the ULU ase also. In

the sequel, we study those two ases by relating them respetively to edges and

verties of the CDP. Thanks to these assoiations, we ould desribe in Theorem

3.11 an upper bound on the number of maximal DSS.

3.2 Case study

an edge−supported segment

a supporting edge

Figure 4: Supporting edge and edge-supported segments of a CDP

We �rst study the ULU ase. Doerksen and Debled [22℄ proved that prinipal

upper leaning points of maximal segment are verties of the CDP. Hene, any

maximal segment in the ULU ase de�nes a digital edge whih links these upper

leaning points. This motivates the following de�nitions (see Fig. 4) and lemma.

De�nition 3.3. We all supporting edge, a digital edge whose two verties

de�ne leftmost and rightmost upper leaning points of some maximal segment.

De�nition 3.4. We all edge-supported segment, a maximal segment de�ned

by a supporting edge.

Lemma 3.5. A supporting edge de�nes only one maximal segment: it is the

only one ontaining the edge and it has the same slope. If a maximal segment

ontains two or more upper leaning points then there is a supporting edge linking

its leftmost and rightmost upper leaning points with the same slope. If a maximal

segment ontains three or more lower leaning points then it ontains a supporting

edge with the same slope.

Hene, we an assoiate to any maximal segment in the ULU ase its or-

responding digital edge. Thus, there is a natural orrespondene between ULU

maximal segments and a subset of the edges of the CDP.

We then study the LUL ase. The only upper leaning point of suh a maximal

segment is learly a vertex of the CDP. We thus introdue the following de�nition

(see Fig. 5).

De�nition 3.6. We all vertex-supported segment, a maximal segment whose

slope is only de�ned by its two onseutive lower leaning points. Suh a segment

has only one upper leaning point.
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a vertex−supported segment

Figure 5: Vertex supported segments of a CDP

It is natural to assoiate the LUL maximal segment to the vertex U of the

CDP. To get bounds on the number of LUL maximal segments, we must study

further the relation between verties of the CDP and LUL segments. This is

done in next subsetion.

3.3 Upper bound for the number of maximal segments

In Propositions 3.9 and 3.10, we prove that there exists at most one vertex-

supported segment of odd and even depth at any vertex of the CDP. But before

stating them, we give �rst two tehnial lemmas.

Lemma 3.7. Consider a vertex-supported segment, with L1 and L2 its lower

leaning points, leftmost and rightmost respetively. Let us all U its only upper

leaning point. If I and E stand as the �rst and last point of this maximal

segment. We have:

F (I) = F (L1) = E and B(E) = B(L2) = I

Proof. Sine this maximal segment is vertex-supported, its slope is de�ned

by [L1L2], hene any subset of this maximal segment ontaining [L1L2] has

the same slope. Therefore [IE] and [L1E] have the same slope, thus F (I) =
F (L1) = E. Similarly [L1E] and [IE] have the same slope, entailing B(E) =
B(L2) = I. �

Lemma 3.8. Two distint vertex-supported segments MS = [IL1L2E] and

MS′ = [I ′L′
1L

′
2E

′] annot have their lower leaning points ordered as follow:

L′
1 ≤ L1 < L2 ≤ L′

2

Proof. If preeding equality holds between MS and MS′
, the extremities of MS

an only be set in four positions onsidering L′
1 and L′

2. We show that none of

them an be ahieved:

MS annot be stritly ontained into [L′
1L

′
2] sine [L′

1L
′
2] is a DSS.

If MS extends over [L′
1L

′
2] then preeding inequality does not hold, beause

MS and MS′
would be idential, whih raise a ontradition.

Consider now that MS has its �rst point before L′
1 and its last point before

L′
2, we get a ontradition beause F (L1) = E (Lemma 3.7) and F (L1) ≥ L′

2

sine [L1L
′
2] is a DSS.

Similarly if the �rst point of MS is after L′
1 and its last point after L′

2,

B(L2) = I (Lemma 3.7) and B(L2) ≤ L′
1 sine [L′

1L2] is a DSS. This onludes

the proof. �
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We now relate the number of vertex-supported segments to the number of

digital edges.

Proposition 3.9. On a vertex of the CDP there is at most one vertex-supported

segment with an even depth.

Proof. The proof is made by ontradition. Consider there exists two vertex-

supported segments of even depth. Say MS of depth z2i with L1, L2 its lower

leaning points (leftmost and rightmost) and U2 as upper leaning point; MS′
of

depth z′2j with L′
1, L′

2 its lower leaning points and U2 as upper leaning point

(they share the same vertex as upper leaning point). If L1 = L′
1 , then MS and

MS′
oinide sine they are maximal segments (using Lemma 3.7). Consider

now that L′
1 < L1, that is the leftmost lower leaning point of MS′

lays before the

one of MS on the onvex disrete urve. In this ase it is lear that [L1U2] ⊂
[L′

1U2]. Thus [L′
1U2] = l′[L1U2] with l′ some left strit fator of [L′

1U2]. From

Proposition B.2 [L1U2] has E(z2i−1)
u2i−1

as a right fator. We an now write

[L′
1U2] = l′lE(z2i−1)

u2i−1
with l some left strit fator of [L1U2], and [L′

1U2]
ontains the pattern E(z2i−1). Sine [L′

1U2] is a right subpart of the pattern

E(z′2j), E(z2i−1) is a right strit fator of E(z′2j).
If z2i = [0, u1, . . . , u2i−1, u2i], from Proposition B.3 the slope z′2j has z2i−2 as

a 2i − 2 onvergent, and u′
2i−1 ≥ u2i−1. Thus z′2j = [0, u1, . . .

. . . , u2i−2, u
′
2i−1, u

′
2i, . . . , u

′
2j]. From Proposition B.2 (swithing U1L1 with U2L2

in the proposition) we have L1(U2L2) = q2i−1 + p2i−1 = u2i−1(q2i−2 + p2i−2) +
q2i−3 + p2i−3 and L1(U2L

′
2
) = q′2j−1 + p′2j−1.

From the writing of L1(U2L
′
2
) and with u′

2i−1 ≥ u2i−1, we have L1(U2L
′
2
) ≥

L1(U2L2). As a result we have : L′
1 < L1 < U2 < L2 ≤ L′

2. Using Lemma 3.8

we get a ontradition. �

Similarly, we obtain the same result for a segment with an odd depth.

Proposition 3.10. On a vertex of the CDP there is at most one vertex-supported

segment with an odd depth.

We have seen that any edge-supported segment is assoiated to one edge

of the CDP and that to eah vertex of the CDP at most two vertex-supported

segments an be assoiated. This leads to the following upper bound.

Theorem 3.11. If Γ is a CDP, its number of maximal segments is upper

bounded by three times its number of edges.

Proof. Let us onsider the following numbers of maximal segments:

• nULU are the edge-supported segments whose slope is given by their upper

leaning point. Eah of them is linked to a supporting edge.

• neven
LUL are the vertex-supported segments with an even depth.

• nodd
LUL are the vertex-supported segments with an odd depth.

It is lear that nMS(Γ) = nULU + nodd
LUL + neven

LUL. Moreover we have:

• nULU ≤ ne(Γ).

• neven
LUL ≤ ne(Γ) from Proposition 3.9.

• nodd
LUL ≤ ne(Γ) from Proposition 3.10.

Consequently: nMS ≤ 3ne(Γ) �.
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3.4 Absorption of digital edges by maximal segments and

lower bound

In the previous subsetion, we provide an upper bound on the number of max-

imal segments. The lower bound however depends on the resolution m of the

digitization proess and will be studied later on. In this subsetion, we study

the absorption phenomena of digital edges by maximal segments.

We reall that eah digital edge of the CDP is a pattern. We now try to �nd

how many edges an be absorbed by a single maximal segment. This is done in

three steps. We begin with Lemma 3.12 whih examines under whih onditions

a pattern ould be extended by suessive patterns so that the resulting set is

not a pattern but still a digital straight segment. We then determine how many

edges (i.e. patterns) an �t into a maximal segment, �rst into edge-supported

segments and seondly into vertex-supported segments (Theorem 3.13). These

results, ombined together, give the lower bound for the number of maximal

segments wrt the number of edges, whih is shown to be log-dependent on the

maximal slope depth of digital edges.

Lemma 3.12. We all Pn a pattern of depth n whose Freeman ode is E(zn).
One an build strit right and left fators (alled respetively R and L) of Pn

suh that:

(i) [RPn], [PnL] and [RPnL] are DSS of slope zn,

(ii) R and L are patterns (or suessions of the same pattern) ,

(iii) RPn, PnL and RPnL are not patterns,

(iv) the slope of R is greater than that of Pn and the slope of Pn is greater than

that of L,

(v) maximal depth of slope of R and L depends on parity of n:
Depth of Pn maximal depth of R maximal depth of L

2i + 1 2i + 1 2i
2i 2i − 1 2i

their Freeman moves are suh that:

Freeman moves of Pn Freeman moves of R Freeman moves of L

E(z2i+1) E(z2i)
u2i+1−rE(z2i−1) E(z2i)

u2i+1−l

E(z2i) E(z2i−1)
u2i−r E(z2i−2)E(z2i−1)

u2i−l

(vi) Depth of fators obtained by substrating R or L from Pn depends on par-

ity of n:
Depth of Pn depth of Pn r R depth of Pn r L

2i + 1 2i 2i + 1
2i 2i 2i − 1

their Freeman moves are suh that:

Freeman moves of Pn Freeman moves of Pn r R Freeman moves of Pn r L
E(z2i+1) E(z2i)

r E(z2i)
lE(z2i−1)

E(z2i) E(z2i−2)E(z2i−1)
r E(z2i−1)

l

Proof. Sine R and L are strit fators of Pn, their Freeman moves are om-

patible with those of E(zn), giving same slope when R,Pn and L are put together.

Thus [RPn], [PnL] and [RPnL] are DSS of slope zn. This onludes (i). From
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digital straightness we learly have digital onvexity (see [15℄). Upper leaning

points of this DSS are loated at extremities of Pn.

We simply hoose among strit fators R and L those that are patterns so

that they �t desriptions given in Eq. (5) and Eq. (6). Whih brings (ii).
We may now desribe them given the parity of n. Consider the ase where

n is odd (say n = 2i + 1), from Eq. (5) we get: R = E(z2i)
u2i+1−rE(z2i−1) and

L = E(z2i)
u2i+1−l

with r > 0 and l > 0. If R and L are longer patterns, they

are not anymore strit fators of P2i+1. We see that R is a pattern of depth

2i + 1 and that L is a suession of the pattern E(z2i), with a depth of 2i. This
brings (v)Â in the odd ase.

The slope of R equals z′2i+1 = [0, u1, . . . , u2i, u2i+1−r] =
p′

2i+1

q′

2i+1

. From Eq. (2)

and Eq. (3) we get that

p2i+1

q2i+1
=

p′

2i+1+rp2i

q′

2i+1
+rq2i

. The sign of z′2i+1 − z2i+1 is that of

p′2i+1q2i − q′2i+1p2i, and is positive (see Eq. (1)). Thus the slope of R is greater

than that of P2i+1. Same reasoning applied to z2i+1 − z2i brings that the slope

of P2i+1 is greater than that of L. Thus (iv) holds in the odd ase.

Consider now that n is even (say n = 2i), from Eq. (6) we get: R =
E(z2i−1)

u2i−r
and L = E(z2i−2)E(z2i−1)

u2i−l
. If R and L are longer patterns,

they are not anymore strit fators of P2i. Clearly, R has a depth of 2i− 1 and

that of L equals 2i. This brings (v) in the even ase.

The slope of L equals z′2i = [0, u1, . . . , u2i−1, u2i− l] =
p′

2i

q′

2i

. From Eq. (2) and

Eq. (3) we get that

p2i

q2i
=

p′

2i+lp2i−1

q′

2i
+lq2i−1

. The sign of z2i − z′2i is that of q′2ip2i−1 −
p′2iq2i−1, and is positive (see Eq. (1)). Thus the slope of Pn is greater than that

of L. Same reasoning applied to z2i−1 − z2i brings that the slope of R is greater

than that of Pn. Thus (iv) holds in the even ase.

From Eq. (6) and Eq. (5) and preeding results it is lear that RPn, PnL
and RPnL annot be desribed as patterns whih brings (iii).

If n is odd then the fator obtained by substrating R from P2i+1 equals

E(z2i)
r
and substrating L from P2i+1 gives E(z2i)

lE(z2i−1). In the even ase

the fator obtained by substrating R from P2i equals E(z2i−2)E(z2i−1)
r
and

substrating L from P2i gives E(z2i−1)
l
. Thus (vi) holds. �

Theorem 3.13 shows that the maximal number of digital edges that may be

ontained in a maximal segment linearly depends on the depth of its slope.

Theorem 3.13. We have the following:

1. Let E be a supporting edge whose slope has a depth n, n ≥ 2, then the edge-

supported maximal segment assoiated with E inludes at most n other

edges on eah side of E.

2. Any vertex-supported maximal segment whose slope has a depth n inludes

at most 2n edges.

Proof. We only provide the proof of the �rst result and refer to [9℄ for a similar

proof of the seond result.

We onstrut 2n digital edges around E:

• (Ri)1≤i≤n at left of E,

• (Li)1≤i≤n at right of E.
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These edges are suh that [Rn . . . Ri . . . R1EL1 . . . Lj . . . Ln] is a DSS of slope

zn = a/b and has no other upper leaning points but those loated on E. E
may ontain several times the pattern E(zn). It is lear that Rn . . . Ri . . . R1

(resp. L1 . . . Lj . . . Ln) has to be a right (resp. left) strit fator of E(zn) to be

ompatible with it. Moreover Ri is a right strit fator of E(zn) r Ri−1 . . . R1

and Li is a left strit fator of E(zn) r L1 . . . Li−1. From Proposition 3.1 if

(Ri)1≤i≤n and (Li)1≤i≤n are patterns or suessions of the same pattern, then

they are digital edges. From Eq. (5) and Eq. (6) two suessive digital edges

with same depth (say n) annot form a right or left strit fator of a pattern

with same depth. Thus depths of (Ri)1≤i≤n and (Li)1≤i≤n are dereasing when i
inreases. Moreover to ful�ll onvexity properties, slopes of edges are dereasing

from Rn to Ln.

We now build (Ri)1≤i≤n when n is odd (say n = 2i+1). From Lemma 3.12 (v),
R1 has a depth that equals 2i + 1 and R2 is a right strit fator of E(zn) r R1

whih is by Lemma 3.12 (vi) a pattern of depth 2i. Applying again Lemma 3.12(v)
brings R2 with a depth of 2i−1. Sine omplexities are dereasing, we only take

into aount the right part of E(zn) r R1R2 whih has a depth equaling at most

2i − 1, that is E(z2i−1)
r2
. We an now build R3 and R4 using Lemma 3.12 on

E(z2i−1). Applying the same reasoning reursively brings other edges as shown

on Table 1. Lemma 3.12( iv) also implies dereasing slopes, that is digital on-

vexity.

Construtions for the three other ases are given in Tables 1 and 2 and

follow the same reasoning. To satisfy full deomposition eah (uk)1≤n has to

be equal or greater than 2. If this ondition is not meet for some k, than steps

assoiated with it (e.g. any fators ontaining uk − rj or uk − lj as powers of

some pattern) are skipped. This onludes the proof. �

The following orollary is based on the proof of Theorem 3.13 by taking the

worst-ase onstrution. A similar result related to linear integer programming

is in [24℄. It may also be obtained by viewing standard lines as intersetion of

two knapsak polytopes [14℄.

Corollary 3.14. The shortest pattern of a supporting edge for whih its maxi-

mal segment may ontain 2n + 1 digital edge is zn = [0, 2, . . . , 2]. If the DCP is

enlosed in a m × m grid, then the maximal number n of digital edges inluded

in one maximal segment is upper bounded as:

n ≤ log (2
√

2m)

log (1 +
√

2)
− 1

Proof. From Theorem 3.13 we know that maximal segments may ontain at

most 2n + 1 digital edges. We further know that these ones are edge-supported

segments. We now look for the shortest pattern. To ful�ll all onditions, if

zn = [0, u1, . . . , un] is the slope of the pattern then eah ui, 1 ≤ i ≤ n, has to

be greater or equal than two. The length of eah pattern zn (say L1(E(zn)))
an be omputed using Eq (2) and (3) and an be expressed as a funtional of

u1, . . . , un. A loser look these equations brings that:

∂L1(E(zn))
∂ui

≥ 0 for eah

1 ≤ i ≤ n. As a result, the shortest pattern that mathes Theorem 3.13 is suh

that: 1 ≤ i ≤ n ui = 2 and u0 = 0.
Asymptotially, we get the number L = [0, 2, . . . , 2, . . .], whih is a quadrati

number equal to −1 +
√

2. Its reursive haraterization is Un = 2Un−1 + Un−2
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Table 1: Construtions of (Ri)1≤i≤n and (Li)1≤i≤n given n odd .

Construtions of (Ri)1≤i≤n when n = 2i + 1
Fator Freeman moves Depth

R1 E(z2i)
u2i+1−r1E(z2i−1) 2i + 1

R2 E(z2i−1)
u2i−r2 2i − 1

R3 E(z2i−2)
u2i−1−r3E(z2i−3) 2i − 1

R4 E(z2i−3)
u2i−2−r4 2i − 3

.

.

.

.

.

.

.

.

.

R2j E(z2i+1−2j)
u2i+2−2j−r2j 2i + 1 − 2j

R2j+1 E(z2i−2j)
u2i+1−2j−r2j+1E(z2i−1−2j) 2i + 1 − 2j

.

.

.

.

.

.

.

.

.

R2i+1 0u1−r2i+11 1

Construtions of (Li)1≤i≤n when n = 2i + 1
Fator Freeman moves Depth

L1 E(z2i)
u2i+1−l1 2i

L2 E(z2i−2)E(z2i−1)
u2i−l2 2i

L3 E(z2i−2)
u2i−1−l3 2i − 2

L4 E(z2i−4)E(z2i−3)
u2i−2−l4 2i − 2

.

.

.

.

.

.

.

.

.

L2j E(z2i−2j)E(z2i+1−2j)
u2i+2−2j−l2j 2i + 2 − 2j

L2j+1 E(z2i−2j)
u2i+1−2j−l2j+1 2i − 2j

.

.

.

.

.

.

.

.

.

L2i+1 0u1−l2i+1 0

with U0 = 0 and U1 = 1. We also have zn = [0, 2, . . . , 2
︸ ︷︷ ︸

n times

] = Un

Un+1
.

Solving it leads to Un =
√

2
4

(
(1 +

√
2)n − (1 −

√
2)n

)
. Hene asymptotially,

Un ≈
√

2
4 (1 +

√
2)n

and limn→∞
Un

Un+1
= L.

Reall that zn is the n-th onvergent of L. We have L1(E(zn)) = Un +Un+1.

To �t into an m × m grid, zn is suh that Un+1 ≤ m. We thus obtain that

n ≤ log(2
√

2m)

log(1+
√

2)
− 1. �

We give now the upper and lower bounds for the number of maximal seg-

ments on �nite CDP.

Theorem 3.15. The number of maximal segments on a CDP enlosed into a

m × m grid is bounded by:

ne(Γ)

K1 log m + K2
≤ nMS(Γ) ≤ 3ne(Γ)

with K1 = 2

log (1+
√

2)
and K2 = log 8(

√
2−1)

log (1+
√

2)
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Table 2: Construtions of (Ri)1≤i≤n and (Li)1≤i≤n given n even.

Construtions of (Ri)1≤i≤n when n = 2i

Fator Freeman moves Depth

R1 E(z2i−1)
u2i−r1 2i − 1

R2 E(z2i−2)
u2i−1−r2E(z2i−3) 2i − 1

R3 E(z2i−3)
u2i−2−r3 2i − 3

R4 E(z2i−4)
u2i−3−r4E(z2i−5) 2i − 3

.

.

.

.

.

.

.

.

.

R2j E(z2i−2j)
u2i+1−2j−r2j E(z2i−1−2j) 2i + 1 − 2j

R2j+1 E(z2i−1−2j)
u2i−2j−r2j+1 2i − 1 − 2j

.

.

.

.

.

.

.

.

.

R2i 0u1−r2i1 1

Construtions of (Li)1≤i≤n when n = 2i
Fator Freeman moves Depth

L1 E(z2i−2)E(z2i−1)
u2i−l1 2i

L2 E(z2i−2)
u2i−1−l2 2i − 2

L3 E(z2i−4)E(z2i−3)
u2i−2−l3 2i − 2

L4 E(z2i−4)
u2i−3−l4 2i − 4

.

.

.

.

.

.

.

.

.

L2j E(z2i−2j)
u2i+1−2j−l2j 2i − 2j

L2j+1 E(z2i−2−2j)E(z2i−1−2j)
u2i−2j−l2j+1 2i − 2j

.

.

.

.

.

.

.

.

.

L2i 0u1−l2i 0

Proof. We know that maximal segments over the entire disrete urve and

that a maximal segment of depth n ontains at most 2n + 1 digital edges. Thus

there annot be less maximal segments than ne(Γ)/(2n+1). Preeding orollary
yields:

n ≤ log(2
√

2m)

log(1 +
√

2)
− 1

Whih leads to the inequality:

ne(Γ) log(1 +
√

2)

2 logm + log 8(
√

2 − 1)
≤ nMS(Γ) ≤ ne(Γ)

2n + 1

Theorem 3.11 brings the upper bound, putting both inequalities together bring:

ne(Γ)

K1 log m + K2
≤ nMS(Γ) ≤ 3ne(Γ)

4 Length of maximal digital straight segments

We present in this part how the length of maximal segments and of digital edges

are tightly intertwined. We all L1
the length estimator based on the Minkowski
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distane. For a vetor u we write L1(u) and for a 4-onneted disrete path

[AB] we write L1([AB]). Note that if [AB] is a DSS then L1([AB]) = L1(AB).
We begin our study by omparing the length of edge-supported with the

length of its assoiated supporting edge (Proposition 4.1). We similarly study

vertex-supported segments (Proposition 4.2).

Proposition 4.1. Let [VkVk+1] be a supporting edge of slope

a
b
made of f pat-

terns (a, b) and let MS be the maximal segment assoiated with it (Lemma 3.5).

Their lengths are linked by the inequalities:

L1(VkVk+1) ≤ L1(MS) ≤ f + 2

f
L1(VkVk+1) − 2

1

3
L1(MS) < L1(VkVk+1) ≤ L1(MS) < 3L1(VkVk+1)

Proof. Verties Vk and Vk+1 are leftmost and rightmost upper leaning points

of MS. The points Vk − (b, a), Vk+1 + (b, a) while learly upper leaning points

of the standard line going through [VkVk+1] annot belong to the CDP. Hene

MS annot extend further of its supporting edge of more than |a|+ |b|−1 points

on both sides. Consequently L1(MS) ≤ L1(VkVk+1) + 2(|a| + |b| − 1). Using

L1(VkVk+1) = f(|a|+|b|) brings: L1(VkVk+1) ≤ L1(MS)) ≤ f+2
f

L1(VkVk+1)−2.

Worst ases bring L1(VkVk+1) ≤ L1(MS) < 3L1(VkVk+1) �

Proposition 4.2. Let MS be a vertex-supported segment and Vk its upper lean-

ing point whih is a vertex of the CDP. The length of this maximal segment is

upper bounded by:

L1(MS) ≤ 4
(
L1(Vk−1Vk) + L1(VkVk+1)

)

Proof. We all L1, L2 the leftmost and rightmost lower leaning points and

U2 ≡ Vk the upper leaning point (see Fig. 3). Suppose that MS has a slope with

an odd depth (say 2i + 1).
Proposition B.1 implies L1(L1U2) = q2i+p2i. There is learly a right part of

[L1U2] (i.e. [L1Vk]) that is ontained in [Vk−1Vk] and touhes Vk. The pattern

E(z2i−1)
u2i

is a right fator of [L1U2] (Proposition B.1 again). It is indeed a

right fator of [Vk−1Vk] too, sine it annot extends further than Vk−1 to the

left without de�ning a longer digital edge. We get [Vk−1Vk] ⊇ E(z2i−1)
u2i

and

immediately L1(Vk−1Vk) ≥ u2iL1(E(z2i−1)) = u2i(q2i−1 + p2i−1).
From Eq. (2) and Eq. (3), we have: q2i + p2i = u2i(q2i−1 + p2i−1) + q2i−2 +

p2i−2 and q2i−2 + p2i−2 ≤ q2i−1 + p2i−1. We obtain immediately L1(L1U2) =
q2i + p2i ≤ (u2i + 1)(q2i−1 + p2i−1). By omparing this length to the length of

the digital edge [Vk−1Vk], we get:

L1(L1U2) ≤ u2i + 1

u2i

L1(Vk−1Vk)

Proposition B.1 and similar arguments on [VkVk+1] bring :

L1(U2L2) ≤ u2i+1

u2i+1 − 1
L1(Vk−1Vk)

Worst ases are then L1(L1U2) ≤ 2L1(Vk−1Vk) and L1(U2L2) ≤ 2L1(VkVk+1).
The ase where MS has a slope with an even depth (say 2i) uses Proposition B.2
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and for the same reasons as above leads to:

L1(L1U2) ≤ u2i

u2i − 1
L1(Vk−1Vk) ≤ 2L1(Vk−1Vk)

L1(U2L2) ≤ u2i−1 + 1

u2i−1
L1(VkVk+1) ≤ 2L1(VkVk+1)

Sine MS has only one upper leaning point, it annot be extended further

than L1(U2L2) on the left and L1(L1U2) on the right (Lemma 3.5). Thus, we

get:

L1(MS) ≤ 4(L1(Vk−1Vk) + L1(VkVk+1)) �

We are now able to ompare the total length of maximal segments with the

perimeter of the DCP.

Proposition 4.3. Let Γ be a CDP, nMS(Γ) the number of maximal segment

on Γ, then :

∑

i∈nMS(Γ)

L1(MSi) ≤ 19Per(Γ)

Proof. With the notations of Theorem 3.11 and with slight abuse of notations,

we deompose the total length as:

∑

nMS

L1(MSi) =
∑

nULU

L1(MSULU ) +
∑

nodd
LUL

L1(MSodd
LUL) +

∑

neven
LUL

L1(MSeven
LUL)

Let us now fous on

∑

nULU
L1(MSULU ), using Proposition 4.1 we get :

∑

nULU

L1(MSULU ) ≤ 3
∑

nULU

L1([VkVk+1])

Using nULU ≤ ne(Γ) and the fat that eah digital edge appears at most one

lead us to

∑

nULU
L1([VkVk+1]) ≤ Per(Γ) entailing that:

∑

nULU

L1(MSULU ) ≤ 3Per(Γ)

Considering

∑

nodd
LUL

L1(MSodd
LUL) and

∑

neven
LUL

L1(MSeven
LUL) with Proposition 4.2

we have:

∑

nodd
LUL

L1(MSodd
LUL) ≤ 4

∑

nodd
LUL

(
L1([Vk−1Vk]) + L1([VkVk+1])

)

∑

neven
LUL

L1(MSeven
LUL) ≤ 4

∑

neven
LUL

(
L1([Vk−1Vk]) + L1([VkVk+1])

)

Considering that nodd
LUL ≤ ne(Γ) (from Proposition 3.10) and neven

LUL ≤ ne(Γ)
(from Proposition 3.9) and that eah digital edge appears at most one, we learly

get :

∑

nodd
LUL

L1(MSodd
LUL) ≤ 4




∑

nodd
LUL

L1([Vk−1Vk]) +
∑

nodd
LUL

L1([VkVk+1])



 ≤ 8Per(Γ)
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∑

neven
LUL

L1(MSeven
LUL) ≤ 4




∑

neven
LUL

L1([Vk−1Vk]) +
∑

neven
LUL

L1([VkVk+1])



 ≤ 8Per(Γ)

Eventually putting everything together brings:

∑

nMS

L1(MSi) ≤ 19Per(Γ) �

We are now able to bound the average length of maximal segments wrt the

number of edges on a CDP and the grid in whih it is enlosed.

Theorem 4.4. Let Γ be a CDP enlosed in a m × m grid, we have :

Per(Γ)

3ne(Γ)
≤

∑

nMS
L1(MSi)

nMS(Γ)
≤ 19Per(Γ)(K1 log m + K2)

ne(Γ)

with K1 and K2 de�ned as in Theorem 3.15.

Proof. From Theorem 3.15 we get :

1

3ne(Γ)
≤ 1

nMS(Γ)
≤ K1 log m + K2

ne(Γ)

And from Proposition 4.3:

∑

nMS

L1(MSi) ≤ 19Per(Γ)

Sine maximal segments over the entire disrete urve we have:

Per(Γ) ≤
∑

nMS

L1(MSi)

It is now easy to see that:

Per(Γ)

3ne(Γ)
≤

∑

nMS
L1(MSi)

nMS(Γ)
≤ 19Per(Γ)(K1 log m + K2)

ne(Γ)

We have thus shown that, on onvex digital polygons, the average size of

maximal segments is essentially proportional to the average size of the digital

edges. Maximal segments may be slightly longer than digital edges on average

by a logarithmi fator of the size of the grid ontaining the digital shape.

5 Asymptoti onvergene

We may now turn to a diret appliation of the previous results of the paper by

studying the asymptoti properties of disrete geometri estimators on digitized

shapes. We therefore onsider a plane onvex body S whih is ontained in the

square [0, 1]×[0, 1] (w.l.o.g.). Furthermore, we assume that its boundary γ = ∂S
is C3

with everywhere stritly positive urvature. This assumption is not very

restritive sine people are mostly interested in regular shapes. Furthermore,

the results of this setion remains valid if the shape an be divided into a �nite

number of onvex and onave parts; eah one is then treated separately. The

digitization of S with step 1/m de�nes a digital onvex polygon Γ(m) insribed
in a m × m grid. We �rst examine the asymptoti behavior of the maximal

segments of Γ(m), both theoretially and experimentally. We then study the

asymptoti onvergene of a disrete urvature estimator.
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Figure 6: For both urves, the digitized shape is a disk of radius 1 and the

absissa is the digitization resolution. Left: plot in log-spae of the L1
-size

of maximal segments. Right: plot of the mean and standard deviation of the

absolute error of urvature estimation, |κ̂ − 1| (expeted urvature is 1).

5.1 Asymptoti behavior of maximal segments

The next theorem summarizes the asymptoti average size of maximal segments

with respet to the grid size m.

Theorem 5.1. The average L1
-length L(Γ(m)) of the maximal segments of

Γ(m) has the following asymptoti bounds:

Θ(m
1
3 ) ≤ L(Γ(m)) ≤ Θ(m

1
3 log m). (7)

Proof. Theorem 4.4 gives for the DCP Γ(m) the following inequality:

Per(Γ)

3ne(Γ)
≤

∑

nMS
L1(MSi)

nMS

≤ 19Per(Γ)(K1 log m + K2)

ne(Γ)

where K1 and K2 are two onstants.

Sine Γ(m) is onvex and inluded in the subset m× m of the digital plane,

its perimeter Per(Γ(m)) is upper bounded by 4m. Furthermore, for a su�iently

large m, this perimeter is lower bounded by p(Γ)m, where p(Γ) is twie the sum

of the width and height of the bounding box of Γ. On the other hand, Theorem 2.7

indiates that its number of edges ne(Γ(m)) is lower bounded by c1(S)m
2
3
and

upper bounded by c2(S)m
2
3
. Putting everything together gives:

p(Γ)m

3c2(Γ)m
2
3

≤ L(Γ(m)) ≤ 19 × 4m × (K1 log m + K2)

c1(Γ)m
2
3

whih is one redued what we wanted to show. �

Although there are points on a shape boundary around whih maximal seg-

ments grow as fast as O(m
1
2 ) (the ritial points in [19℄), most of them do not

grow as fast.

On average, maximal segments grows as Θ(m
1
3 ), this fat is on�rmed with

experiments. Fig. 6, left, plots the size of maximal segments for a disk digitized

with inreasing resolution.

21



5.2 Asymptoti onvergene of disrete geometri estima-

tors

A useful property that a disrete geometri estimator may have is to onverge

toward the geometri quantity of the ontinuous shape boundary when the dig-

itization grid gets �ner [4, 5, 17℄.

Of ourse, interesting disrete geometri estimator should onverge for a

large lass of urves. We now reall the de�nition of a disrete urvature esti-

mator based on DSS reognition [4℄.

De�nition 5.2. Let P be any point on a digital ontour Γ in a grid of step

1
m
,

Q = B(P ) and R = F (P ) are the extremities of the longest DSS starting from

P (alled half-tangents). Then the urvature estimator by irumirle κ̂(P ) is

the inverse of the radius of the irle irumsribed to P , Q and R, resaled by

the resolution m.

Experiments show that this estimator rather orretly estimates the urva-

ture of disrete irles on average (≈ 20% error) at low resolution. It seems

indeed better than any other urvature estimators proposed in the litterature.

Theorem B.4 of [4℄ demonstrates the asymptoti onvergene of this urvature

estimator, subjet to the onjeture:

Conjeture 5.3. Half-tangents on digitized boundaries grow at a rate of Θ(m
1
2 )

with the resolution m.

However, with our study of maximal segments, we an state that

Claim 5.4. Conjeture 5.3 is not veri�ed for digitizations of C3
-urves with

stritly positive urvature. We annot onlude on the asymptoti onvergene

of the urvature estimator by irumirle.

Proof. It is enough to note that half-tangents, being DSS, are inluded in max-

imal segments and may not be longer. Thus Theorem 5.1 onludes. �

The asymptoti onvergene of a urvature estimator is thus still an open

problem. Furthermore, preise experimental evaluation of this estimator indi-

ates that it is most ertainly not asymptotially onvergent, although it is on

average one of the most stable digital urvature estimator (see Fig. 6, right).

Former experimental evaluations of this estimator were averaging the urvature

estimates on all ontour points. The onvergene of the average of all urvatures

does not indue the onvergene of the urvature at one point.

6 Conlusion

As a onlusion, we have studied digital straight segments lying on onvex dig-

ital shapes. We have shown several results relating quantities over maximal

segments to the same quantities over digital edges. For shapes digitized at in-

reasing resolutions, their asymptoti behaviour has also been studied. Contrary

to what was thought before in the litterature, maximal segments are shown to

grow essentially at a rate of m
1
3
on average. These results will enable us in the

future to �nd onvergene rates for digital tangent estimators as well as de�ning

a onvergent digital urvature estimator.
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A Digitization and 4 onneted urves

Lemma A.1. Let S be a onvex subset of R2
then D(S) = D(conv(D(S)))

Proof. First we prove that D(S) is always a subset of D(conv(D(S))):

D(S) ⊆ conv(D(S))

D(D(S)) ⊆ D(conv(D(S)))

D(S) ⊆ D(conv(D(S)))

We now prove that eah element of D(conv(D(S))) is in D(S). Let x ∈
D(conv(D(S))), then x ∈ conv(D(S)). Thus x =

∑

i λipi with

∑

i λi = 1 and

λi ≥ 0 for all i. As for all i, pi ∈ D(S), pi ∈ S. Sine S is a onvex shape,

x ∈ S. As x ∈ Z2
, x ∈ D(S). �

Lemma A.2. For a given S where S is a plane onvex body with C3
boundary

and positive urvature, there exists mS suh that for all m ≥ mS, Dm(S) is

onneted.

Proof. There exists r0 suh that S is par(r0) − regular. Thus let Dm(S) with

m ≥ 2
r0
. This entails that m · S is at least par(2) − regular.

Let us now suppose that for resolutions m larger that

2
r0
, Dm(S) may have

several onneted omponents. Let C1,C2 be two onneted omponent of Dm(S)
and let p1, p2 be digital points in eah omponent, C1 and C2 respetively.

Considering the omplement of Dm(S) in Z2
there exists points outside

Dm(S). We pik a point p′1 suh that we an build a 4-onneted path ⊑∞
from p1 to p′1 whom only point outside C1 is p′1. ⊑∞ is suh that it is or-

dered and eah element has a suessor and a predeessor exepted the �rst and

last elements. Moreover this path is hosen suh that there exists a point of the

boundary of m ·S whom inside osulating ball (of radius mr0) ontains one point

of ⊑∞ whih is not p′1. The same reasoning for C2 leads to the 4-onneted path

⊑∈ and the point p′2.
As p′1 and p′2 are both on the boundary of m·S, there exists a ontinuous path

on the boundary of m·S from p′1 to p′2. Let V be the union of the inside osulating

ball of radius mr0 for eah point of this ontinuous path. Sine eah ball has a

radius larger than 2, the Gauss digitization of V is 4-onneted and inside the

Gauss digitization of m · S. This entails that there exists a 4-onneted digital

path between p1 and p2. As a result, Dm(S) has only one onneted omponent

for resolution larger that a threshold depending on the par(r)regularity of S. �

Remark The two preeeding lemmas entail that for large resolution, the

Gauss digitization of onvex shape with C3
boundary and positive urvature are

always well-omposed in the sense of [12, 21℄.

B Preliminary relations involving patterns

This setion presents several properties related to patterns of DSS. They are

used all along the paper. We may now ompute vetor relations between leaning

points (upper and lower) inside a pattern. In the following we onsider a DSS

(a, b, 0) in the �rst otant starting at the origin and ending at its seond lower

leaning point (whose oordinate along the x-axis is positive). We de�ne a/b =
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zn = [0, u1, . . . , un] for some n. Leaning points will be alled U1, L1, U2 and L2

as shown in Fig. 3. By de�nition U1U2 = L1L2 = (b, a) and U1L1 = U2L2.

We reall that the Freeman moves of [U1L1] are the same as those of [U2L2].
Furthermore Freeman moves between U1 and U2 form the pattern (a, b) and

those between L1 and L2 form the reversed pattern (a, b). Proposition B.1

and Proposition B.2 indiate more preisely where leaning points lie within a

pattern.

Proposition B.1. A pattern with an odd depth (say n = 2i + 1) is suh that

U1L1 = (u2i+1−1)(q2i, p2i)+(q2i−1, p2i−1)+(1,−1) and L1U2 = (q2i−1, p2i+
1). Moreover the DSS [U1L1] has E(z2i)

u2i+1−1
as a left fator, and the DSS

[L1U2] has E(z2i−1)
u2i

as a right fator.

Proof. From Eq. (1) we have: p2i+1q2i − p2iq2i+1 = (−1)2i+1+1 = 1, whih
an be rewritten as: aq2i − bp2i = 1. Thus q2i and p2i are learly the Bézout

oe�ients of (a, b). One an hek that point (b+1− q2i, a− 1− p2i) is L1: its

remainder is a + b− 1 and its x-oordinate while positive is smaller than b. We

immediately get U1L1 = (b + 1 − q2i, a − 1 − p2i).
Using Eq. (3) yields: U1L1 = ((u2i+1 − 1)q2i + q2i−1 + 1, (u2i+1 − 1)p2i +

p2i−1 − 1). From L1U2 = −U1L1 + U1U2, we further get that L1U2 =
(q2i − 1, p2i + 1). From Eq. (5) E(z2i)

u2i+1−1
is a left fator of [U1U2] but

also of [U1L1]. Writing E(z2i+1) as E(z2i)
u2i+1−1E(z2i−2)E(z2i−1)

u2i+1
, and

expanding L1U2 as (u2iq2i−1 + q2i−2 − 1, u2ip2i−1 + p2i−2 + 1) with Eq. (2), we

see that E(z2i−1)
u2i

is a right fator of [L1U2]. �

Proposition B.2. A pattern with an even depth (say n = 2i) is suh that

U1L1 = (q2i−1+1, p2i−1−1) and L1U2 = (u2i−1)(q2i−1, p2i−1)+(q2i−2, p2i−2)+
(−1, 1). Moreover the DSS [U1L1] has E(z2i−2)

u2i−1
as a left fator, and the

DSS [L1U2] has E(z2i−1)
u2i−1

as a right fator.

The proof is similar to the proof of Proposition B.1 and may be found in [9℄.

Patterns and sub-patterns that are right or left fators have their slopes losely

related, as shown by Proposition B.3 and Proposition B.4.

Proposition B.3. If the odd pattern E(z′2p+1) with z′2p+1 = [0, u′
1, . . . , u

′
2p+1]

is a right fator of the pattern E(zk) with zk = [0, u1, . . . , uk] then:

z′2p = z2p and u′
2p+1 ≤ u2p+1

Proof. Consider two patterns E(zk) and E(z′2p+1) with zk = [0, u1, . . . , uk] and
z′2p+1 = [0, u′

1, . . . , u
′
2p+1]. From Eq (5) and (6) it is lear that E(zk) always

ends with an odd pattern whatever k. Consider there exists i (2i + 1 ≤ k) suh
that E(z2i−1) ⊆ E(z′2p+1) ⊆ E(z2i+1) as shown on Fig. 7. If E(z′2p+1) equals

E(z2i+1) then from uniity of deomposition in simple ontinued fration we get

p = i and z′2p+1 = z2p+1. Whih onludes this ase. Otherwise looking at the

deomposition of E(z2i+1) from Eq (5) and (6), there exists j, with 0 ≤ j <
u2i+1 suh that E(z2i)

jE(z2i−1) ⊆ E(z′2p+1) ( E(z2i)
j+1E(z2i−1), whose slopes

are [0, u1, . . . , u2i, j] and [0, u1, . . . , u2i, j + 1]. Any disrete path P suh that

E(z2i)
jE(z2i−1) ⊆ P ( E(z2i)

j+1E(z2i−1) analyzed by the standard DSS reog-

nition algorithm [8℄ is reognized as a DSS with a slope equal to [0, u1, . . . , u2i, j].
Thus the slope of E(z′2p+1) is also [0, u1, . . . , u2i, j]. More preisely, being a pat-

tern, E(z′2p+1) = E([0, u1, . . . , u2i, j]), this entails z′2p+1 = [0, u1, . . . , u2i, j] and
p = i.

24



E(z2i) E(z2i) E(z2i) E(z2i−1)
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Figure 7: The odd pattern E(z2i−1) ⊆ E(z′2p+1) ( E(z2i+1)

Consider now that there is no i suh that: E(z2i−1) ⊆ E(z′2p+1) ⊆ E(z2i+1).
This mean that we annot �nd two odd sub-patterns belonging to E(zk) bounding
E(z′2p+1). As a result we have: E(zk−1) ⊆ E(z′2p+1) ⊆ E(zk) with k being even,

we have E(zk) = E(zk−2)E(zk−1)
uk

and we may onsider two ases:

• there exist j suh that E(zk−1)
j ⊆ E(z′2p+1) ⊆ E(zk−1)

j+1
, with j + 1 ≤

uk,

• or E(zk−1)
uk ( E(z′2p+1) ⊆ E(zk)

In the �rst ase, it is lear that E(z′2p+1) is reognized by the standard DSS

reognition algorithm as a DSS of slope zk−1 sine it is bounded by two disrete

paths of slope zk−1. In this ase we get zk−1 = z′2p+1.

In the other ase, let us note that E(zk−1) ⊂ E(z′2p+1), whih implies that

E(zk−1) is bounded by two odd sub-patterns of E(z′2p+1). Thus using the same

reasoning as earlier-on we get z′k−2 = zk−2 and uk−1 ≤ u′
k−1. From Eq (5) and

(6), it is lear that every pattern begin with even pattern whatever their depth.

As a result E(zk−2) is a left fator of E(z′2p+1) and E(zk). Moreover sine

E(zk−1)
uk ( E(z′2p+1) ⊆ E(zk) ≡ E(zk−2)E(zk−1)

uk
, E(z′2p+1) and E(zk)

begin with the same even pattern. Consequently E(zk) must be equal to E(z′2p+1).
Sine those patterns do not have the same parity of depth it raises a ontradition

and this ase annot happen. This onludes the proof. �

Proposition B.4. If the even pattern E(z′2p) with z′2p = [0, u′
1, . . . , u

′
2p] is a left

fator of the pattern E(zk) with zk = [0, u1, . . . , uk]. We have:

z′2p−1 = z2p−1 and u′
2p ≤ u2p

Proof. see [9℄. �
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