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Abstract

Discrete geometric estimators approach geometric quantities on digitized
shapes without any knowledge of the continuous shape. A classical yet
difficult problem is to show that an estimator asymptotically converges
toward the true geometric quantity as the resolution increases. We study
here, on Convex Digital Polygons, the convergence of local estimators
based on Digital Straight Segment (DSS). This problem is closely linked
to the asymptotic growth of maximal DSS, for which we show bounds both
about their number and sizes. These results not only give better insights
about digitized curves but indicate that curvature estimators based on
local DSS recognition are not likely to converge. We indeed invalidate a
conjecture which was essential in the only known convergence theorem of
a discrete curvature estimator. The proof involves results from arithmetic
properties of digital lines, digital convexity, combinatorics, continued frac-
tions and random polytopes.

1 Introduction

Estimating geometric features of shapes or curves solely on their digitization
is a classical problem in image analysis and pattern recognition. Some of the
geometric features are global to the curve: area, perimeter, moments. Others
are local: tangents, normals, curvature. Algorithms that performs this task on
digitized objects are called discrete geometric estimators. In the following, any
algorithm estimating a local geometric quantity within a fixed size neighborhood
will be called local discrete geometric estimator. We choose to separate them
from local adaptive discrete geometric estimators whose computation windows



may depend (in size) on the resolution. In this paper we consider the Gauss
digitization as the digitization process. An interesting property these estimators
should have is to converge towards the continuous geometric measure as the dig-
itization resolution increases. This property is also called multi-grid convergence
[16]. However, few estimators have been proved to be multi-grid convergent. In
all works, shapes are generally supposed to have a smooth boundary (at least
twice differentiable) and either to be convex or to have a finite number of in-
flexion points. The shape perimeter estimation has for instance been tackled in
[18]. It proved the convergence of a perimeter estimator based on curve segmen-
tation by maximal DSS. The speed of convergence of several length estimators
has also been studied in [5]. Klette and Zuni¢ [17] survey results about the con-
vergence (and the speed of convergence) of several global geometric estimators.
They show that discrete moments converge toward continuous moments. As
far as we know, only Coeurjolly [4] has initiated works to establish the possible
convergence of local adaptive estimators of tangents and curvature. He shows
that estimators based on digital straight segment (DSS) recognition may con-
verge if the length of DSS on the digitized curve grows as fast as O(m?) as the
digitization step % tends toward 0. Determining the asymptotic growth of DSS
along digitized curve is thus crucial for establishing the asymptotic behavior of
local adaptive geometric estimators.

This is precisely the objective of this paper, and is achieved with Theo-
rem 5.1. To do so, we relate two notions usually disconnected when studying
objects in the digital plane: maximal segments defined on digital curves and
edges of convex digital polygons. These notions play complementary roles when
estimating geometric parameters on digital objects, when determining its con-
vexity or when observing asymptotic properties of finer and finer shape digiti-
zations.

Mazimal segments of a digital curve are DSS not strictly included in any
other DSS of the curve. Efficient algorithms have been proposed to extract
them and compute their characteristics [8] as well as optimal algorithms to re-
cover the whole set of maximal segments. They are useful when estimating
the local geometry of digital curves like tangent direction or curvature [10, 20].
Through them digital curves can be polygonized into the minimum number of
straight segments [11]. Maximal segments can be used to decide whether or not
a polyomino is convex [22]. As stated above, when observed on object digitiza-
tions, the growth rate of their length indicates for some geometric estimators if
they converge toward the continuous geometric quantity and at which rate [4].

Oun the other hand, a Convex Digital Polygon (CDP) is a set of lattice points
whose convex hull has the same digitization. Its wvertices are defined as its
minimum subset whose convex hull has same digitization, and its edges are DSS
joining two consecutive vertices. One characterization of digital convexity for a
set of lattice points is exactly to be a CDP [15]. Since CDP are digitizations of
convex shapes, their asymptotic properties when digitized with finer and finer
grid have also been studied. For instance, asymptotic bounds on the number
and length of edges have been exhibited for Gauss digitizations of smooth convex
shapes [1], and extended to nD in [2]. Interestingly, these bounds are related to
random polytopes and have applications in linear integer programming. Along
the same lines, other works [17] give tight upper bounds on the number and
length of edges for CDPs inscribed in a grid square (a CDP is called lattice



convez polygon in this work).

Here we take a specific interest in the maximal segments defined on the
boundary of a CDP. Intuitively, these maximal segments should have a close link
with the edges of the CDP: the latter are indeed digital straight line segment, but
are not generally maximal. However few results can be found in the literature.
To our knowledge the only significant results are in |7, 9]: a maximal segment
may absorb at most O(logm) edges for CDP in a m x m grid square; the length
of the smallest maximal segment is upper bounded by O(m% logm). This upper
bound had consequences on a digital curvature estimator based on circumscribed
circle computation [6], which was thought to be multi-grid convergent and whose
performances are among the best ones in practice at low resolution. However,
as stated above, the proof of the convergence requires that the growth of the
maximal segments follow O(mz) [4]. The conjecture was thus disproved on
some points of the curve, although it was still possible that the estimator be
convergent on a subset of the curve with non-zero measure.

In this work, we go further in establishing the links between maximal seg-
ments and edges of CDP. Most of the new results are obtained by using well
known recursive combinatoric representation of a digital straight segment called
pattern.

We first present the main definitions and used tools in Section 2. The notion
of pattern is given in Section 2.4. We then establish links between maximal
segments and CDP (Section 3). The main results of this section are upper and
lower bound on the number of maximal segment. We obtain, in Section 4, the
asymptotic upper and lower bounds for the average length of maximal segments
along a CDP enclosed in a grid of size m x m. We then study the asymptotic
of the previous results with respect to increasing m in section 5. We conclude
Section 5 by a refutation of the hypothesis used in the previously mentioned
curvature estimator convergence proof. We finally present some conclusions
and perspectives in Section 6.

2 Definitions and tools

We now precisely detail in this part the main objectives of this paper and intro-
duce the outline of our proof. To begin, we recall the digitization process used
in this paper and its associated digital boundary. We pursue with the precise
introduction of the Convex Digital Polygon (CDP) followed by the notions of
standard lines and digital straight segments. The result of Balog and Barany
[1] is a central tool in our study and we present it as well as a sketch of its use
in our proof. All along the paper, when results are announced without proof we
always refer to the technical report [9] for full proofs.

2.1 Digitization and digital curve

Let S be a subset of R?, its Gauss digitization is defined as D(S) = SNZ2?. We
also define the dilatation of S by a real factor r as r-.S. The Gauss digitization
at resolution m is then defined as: D,,(S) = D(m - S). Thus, the considered
digitized objects are subsets of Z2. We precise that this digitization is equivalent
to intersecting S with %Z X %Z up to a scale factor.



4-connectedness defines the adjacency relations on digital objects, which
means that the neighborhood of a point in the digital plane is composed of its
up and down, and left and right neighbors. Among the 4-connected subsets
of Z2, we focus on convex digital polygons which are also called lattice convex
polygons [25].

Definition 2.1. A convex digital polygon (CDP) T is a subset of the digital
plane with a single 4-connected component equal to the digitization of its convex
hull, i.e. T = D(conv(T")). Its vertices (V;)i=1. . form the minimal subset for
which I' = D(conv(Vi, ..., Ve)).

The asymptotic study presented later-on in this paper requires the study of
Gauss digitizations of convex shapes with C3 boundary and positive curvature.
We show that for resolutions larger than a threshold which depends on the
considered shape, the Gauss digitization for such resolutions always brings a
conver digital polygon. This rely on two lemmas whom proofs are presented in
appendix:

Lemma 2.2. Let S be a convex subset of R? then D(S) = D(conv(D(9)))

Lemma 2.3. For a given S where S is a plane convex body with C® boundary
and positive curvature, there exists mg such that for all m > mg, D,,(S) is
4-connected.

For large enough resolution, the Gauss digitizations of convex shapes with
C3 boundary and positive curvature have a single 4-connected component and
are equal to the digitization of the convex hull of their Gauss digitization, they
are thus by definition convex digital polygons.

We can now study the digital boundary of convex digital polygons consider-
ing the Grid Cell Model with 2-cells (see [16] Chap. 2). In this model, each point
of a digitized object is considered as a closed square whom side is equal to 1. Its
topological border defines a Jordan curve in R?. Considering the intersection of
this curve with (Z+ 1) x (Z+ 1), we obtain the set of elements constituting the
digital boundary of our digitized object. This boundary is denoted by C. We
number the points of C incrementally as we visit them when moving clock-wise
along the topological border of the digitized object. Thus each point on the
digital boundary has one predecessor and one successor. The points of the digi-
tal boundary are noted (C) and a set of successive points ordered increasingly
from index 7 to j will be conveniently denoted by [C;C;] when no ambiguities are
raised. Those notations are pictured on Fig. 1. Consequently in the following
we restrict our study to the geometry of such 4-connected digital path.

2.2 Digital Boundary Of Convex Digital Polygons

We have defined convex digital polygons as particular subsets of Z? and their
usual features are defined from those points, namely vertices and edges. We
can consider the vertices and edges on the digital boundary of a CDP as if they
were on the CDP itself. Interestingly, the number of edges and vertices on a
CDP and the number of edges and vertices on its digital boundary only differ
by a constant. Indeed, all edges on the CDP whose direction belongs to |0, T |
(when edges are oriented clock-wise) belong to the digital boundary of the CDP
when shifted with the vector (—3,3) (see Fig. 2). Other edges are obtained



Figure 1: A digitized object considering the Grid Cell Model with 2-cells (left)
and its digital boundary C (right).
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Figure 2: A convex digital polygon, its edges and a digital edge.

symmetrically depending on their direction. As a result, if we denote by n.(I")
the number of edges on the CDP, its digital boundary has at most n.(T") + 4
edges and at least n.(I").

As we consider asymptotic studies where n.(I") increases and tend toward
infinity, we denote by n.(I') these two quantities. Similarly, we denote the
perimeter by Per(T").

An edge is the Euclidean segment joining two consecutive vertices, and a
digital edge is the digital shortest 4-connected digital segment joining two con-
secutive vertices. It is clear that we have as many edges as digital edges and as
vertices.

2.3 Standard line, digital straight segment, maximal seg-
ments

Definition 2.4. (Réveillés [23]) The set of points (x,y) of the digital plane
verifying p < ax — by < p+ |a| + |b|, with a, b and p integer numbers, is called
the standard line with slope a/b and shift p.

The standard lines are the 4-connected discrete lines. The quantity ax — by



is called the remainder of the line. The points whose remainder is u (resp.
w1+ |al + [b| — 1) are called upper (resp. lower) leaning points. Finite connected
portions of digital lines define digital straight segment.

Definition 2.5. A set of successive points [C;C;] of C is a digital straight
segment (DSS) iff there exists a standard line D(a,b, 1) containing them. The
predicate “|[C;Cj] is a DSS” is denoted by S(i,7).

The principal upper and lower leaning points are defined as those with ex-
tremal 2 values. The first index j, i < j, such that S(i,j) and =S(i,j + 1) is
called the front of i. The map associating any i to its front is denoted by F.
Symmetrically, the first index ¢ such that S(i,j) and =S(i — 1,7) is called the
back of j and the corresponding mapping is denoted by B. Maximal segments
are defined as those DSS not strictly included in another DSS.

These relations give the four equivalent characterisations of maximal seg-
ments:

Definition 2.6. Any set of points [C;C}] is called o maximal segment iff any
of the following equivalent characterizations holds: (1) S(i,j) and =S(i,j + 1)
and =S(i—1,7), (2) B(j) =i and F(i) = j, (8) 3k,i = B(k) and j = F(B(k)),
(4) 3K’ ,i = B(F (k")) and j = F(K').

As a corollary, any DSS [C;C};] (hence any point) belongs to at least one
maximal segment. If T is a convex digital polygon, We will denote by nrs(T),
the number of maximal segment on its digital boundary.

Most of the results demonstrated here are directly transposable to 8-connected
curves since there is a natural bijective transformation between standard and
naive digital lines. In the paper, all the reasoning is made in the first octant,
but it extends naturally to the whole digital plane.

2.4 Use of Balog and Barany’s theorem

The original theorem published in [1] deals with the convex hull of Gauss digiti-
zations of plane convex body with C® boundary and positive curvature for large

resolutions. Using Lemma 2.2 and Lemma 2.3 we complete it with the notion
of CDP as follows:

Theorem 2.7. (Adapted from Balog, Bdrdny [1]) If S is a plane convex body
with C® boundary and positive curvature then D, (S) is a CDP for a big enough
m and its number of edges or vertices asymptotically follows

c1(S)m% < ne(Di(5)) < Cz(S)m%

where the constants c1(S) and c2(S) depend on extremal bounds of the curvatures
along S. Hence for a disc ¢1 and co are absolute constants.

Theorem 2.7 is used in the sequel as follows: we build lower and upper
bounds of the number of maximal segments built on the boundary of a CDP.
The upper bound is given by Theorem 3.11 and depends only on the number
of edges of the CDP. The lower bound is given by Theorem 3.15 and relies on
both the number of edges and the resolution of the digitization. Both bounds
are then used in conjunction with Theorem 2.7 to give asymptotic bounds on
the number of maximal segments on the boundary of a CDP, with respect to



the resolution of the digitization grid. For the length of maximal segments, we
use the same strategy. Upper bound for the length is given by Proposition 4.3
and depends only on the perimeter of the CDP. The lower bound also depends
on the perimeter of the CDP. Since the perimeter can be related to the grid
size m, we obtain in Theorem 5.1 the asymptotic law of the average length of
maximal segments along the boundary of the CDP. Those bounds both depend
on m and the constants appearing in Theorem 2.7.

2.5 Recursive decomposition of DSS

We here recall a few properties about patterns composing DSS and their close
relations with continued fractions. They constitute a powerful tool to describe
discrete lines with rational slopes [3, 13]. W..o.g. all definitions and propo-
sitions stated below hold for standard lines and DSS with slopes in the first
octant (e.g. % with 0 < a <b). In the first octant, only two Freeman moves are

possible:
e 0 : one step to the right,
e 1 : one step up.

Definition 2.8. Given a standard line (a,b, 1), we call pattern of characteris-
tics (a,b) the succession of Freeman moves between any two consecutive upper
leaning points. The Freeman moves defined between any two consecutive lower
leaning points is the previous word read from back to front and is called the
reversed pattern.

A pattern (a,b) embedded anywhere in the digital plane is obviously a DSS
(a,b, ) for some p. Since a DSS has at least either two upper or two lower
leaning points, a DSS (a,b, ) contains at least one pattern or one reversed
pattern of characteristics (a, b).

Its is important to note that if a digital straight segment of characteristics
(a,b, 1) contains § pattern (a,b) and ¢’ reversed-pattern (a, b) then it has exactly
d + 1 upper leaning points and ¢’ + 1 lower leaning points. Moreover, we have
0" = 6+ 1. However if a digital straight segment has five leaning point it may be
constituted of two patterns and one reversed-pattern or two reversed-patterns
and one pattern. As a result the number of leaning points of a digital straight
segment cannot precisely describe the number of patterns or reversed-patterns.

Even if the arithmetic approach is a powerful tool for digital straight segment
recognition, other approach may reveal useful to get analytic properties. We
here recall one of those approaches which is connected to continued fractions.

There exists recursive transformations for computing the pattern of a stan-
dard line from the simple continued fraction of its slope (see [3], [25] Chap. 4
and [16] Chap. 9). We choose to focus on Berstel approach, which better suits
our purpose.

A continued fraction is an expression of the form:

1

z=0+
uy +



conveniently denoted [0, u1,...,un,...]. The u; are called elements or partial
coefficient and the continued fraction formed with the k + 1 first partial coeffi-
cient is said to be a k-th convergent of z and is a rational number denoted by
zk- The depth of a k-th convergent equals k. We conveniently denote pi the
numerator (resp. g the denominator) of a k-th convergent.

We recall a few more relations regarding the way convergents are related and
which will be used later on in this paper:

VE>1  prgr—1— pr—1qx = (—1) (1)

po=0 p1=1 Vk>1 Pk = UpPr—1 + DPr—2 (2)
@0=1 qg1=0 Vk>1 qk = UkQr—1 + Qr—2 (3)
20 <2< ... <29 < .. <z< ... <2941 <...<2z3< 2 (4)

Continued fractions can be finite or infinite, we focus on the case of rational
slopes of lines in the first octant, that is finite continued fractions between 0 and
1. Then for each i, u; is a strictly positive integer. In order to have a unique
writing we consider that the last partial coefficient is greater or equal to two;
except for slope 1 = [0, 1].

Let us now explain how to compute the pattern associated with a rational
slope z in the first octant.

Consider E a mapping from the set of positive rational number smaller
than one onto the Freeman-move’s words. As we only consider slopes in the
first octant, we only consider horizontal steps (denoted by 0) and vertical steps
(denoted by 1).

Let us define this mapping as: FE(z9) = 0, E(z1) = 0“*1 and others values
are expressed recursively:

E(22i41) = FE(22:)""" E(22i-1) (5)
E(22i) = FE(22i-2)E(22i-1)"* (6)

It has been shown that this mapping constructs the pattern (a,b) for any

rationnal slope z = ¢. Fig. 3 exemplifies the construction of an odd pattern
using the mapping E.

The Minkowski £! length of F(z) equals py + qr and can be expressed
recursively using Eq. (2) and (3).

Eq. (4) specifies that even convergents are approximations by lower values
and odd convergents are approximations by upper values. It indeed explains
that an even pattern ze,e, and an odd pattern z,qq are combined to form a
more complex pattern z, the slopes verify zeyen < 2 < Zodd-

There exists other equivalent relations for computing numerators and de-
nominators (see [25] Chap. 4 and [16] Chap. 9) and the splitting formula can
be used to obtain patterns. However the splitting formula uses two k-th con-
vergents with the same depth, whereas we here use two k-th convergents of
consecutive depths.

For convenience reasons we say that a slope has an even (resp. odd) depth

when its development in continued fractions has an even (resp. odd) depth.



Figure 3: A digital straight segment of characteristics (10,23,0) with an odd
depth slope, taken between origin and its second lower leaning point.

3 Convex digital polygons and number of maxi-
mal digital straight segments

3.1 Introduction

We now study digital straight segments and patterns lying on the digital contour

of Convex Digital Polygons (CDP). More precisely, we establish some relations

between maximal segments and digital edges of convex shape digitizations.
From characterizations of discrete convexity [15], we obtain the following

property.

Proposition 3.1. Fach digital edge of a CDP is either a pattern or a succession
of the same pattern whose slope is the one of the edge. In other words, both
vertices are upper leaning points of the digital edge.

Proof. Points between two successive vertices on the digital curve are always
below the real segment linking the two vertices. From [15], [V;Viy1] is a DSS.
Thus the real line linking V; and Vi1 is the upper leaning line of the DSS and
both vertices are upper leaning points. [

Maximal segments are DSS: between any two upper (resp. lower) leaning
points lays at least a lower (resp. upper) leaning point. The slope of a maximal
segment is then defined by two consecutive upper and/or lower leaning points.
Digital edges are patterns and their vertices are upper leaning points (from
Proposition 3.1). Thus, vertices may be upper leaning points but never lower
leaning points of maximal segments. Since a digital edge is a DSS, we get:

Lemma 3.2. A maximal segment cannot be strictly contained into o digital
edge.

Thus, a digital edge is either a maximal segment or a strict subset of a
maximal DSS. Since there is one edge associated to one digital edge, the only
specific case is when a digital edge is strictly included in a maximal segment.
As we have seen, the vertices of a digital edge are upper leaning points of the



digital edge but not necessarily upper leaning points of the maximal segment
containing the digital edge. To see what happens on the boundary of the CDP,
we notice that a maximal segment is defined by at least three leaning points.
They are two cases: ULU corresponding to two upper and one lower leaning
points and LUL corresponding to two lower and one upper leaning points. If
a maximal segment contains strictly more than three leaning points, it has at
least two upper leaning points and we say that it verifies the ULU case also. In
the sequel, we study those two cases by relating them respectively to edges and
vertices of the CDP. Thanks to these associations, we could describe in Theorem
3.11 an upper bound on the number of maximal DSS.

3.2 Case study

upporting edge

an edge—supported segment

Figure 4: Supporting edge and edge-supported segments of a CDP

We first study the ULU case. Doerksen and Debled [22] proved that principal
upper leaning points of maximal segment are vertices of the CDP. Hence, any
maximal segment in the ULU case defines a digital edge which links these upper
leaning points. This motivates the following definitions (see Fig. 4) and lemma.

Definition 3.3. We call supporting edge, a digital edge whose two vertices
define leftmost and rightmost upper leaning points of some maximal segment.

Definition 3.4. We call edge-supported segment, a maximal segment defined
by a supporting edge.

Lemma 3.5. A supporting edge defines only one maximal segment: it is the
only one containing the edge and it has the same slope. If a maximal segment
contains two or more upper leaning points then there is a supporting edge linking
its leftmost and rightmost upper leaning points with the same slope. If a maximal
segment contains three or more lower leaning points then it contains a supporting
edge with the same slope.

Hence, we can associate to any maximal segment in the ULU case its cor-
responding digital edge. Thus, there is a natural correspondence between ULU
maximal segments and a subset of the edges of the CDP.

We then study the LUL case. The only upper leaning point of such a maximal
segment is clearly a vertex of the CDP. We thus introduce the following definition
(see Fig. 5).

Definition 3.6. We call vertex-supported segment, a mazimal segment whose
slope is only defined by its two consecutive lower leaning points. Such a segment
has only one upper leaning point.

10



avertex—supported segment

Figure 5: Vertex supported segments of a CDP

It is natural to associate the LUL maximal segment to the vertex U of the
CDP. To get bounds on the number of LUL maximal segments, we must study
further the relation between vertices of the CDP and LUL segments. This is
done in next subsection.

3.3 Upper bound for the number of maximal segments

In Propositions 3.9 and 3.10, we prove that there exists at most one vertex-
supported segment of odd and even depth at any vertex of the CDP. But before
stating them, we give first two technical lemmas.

Lemma 3.7. Consider a vertex-supported segment, with L1 and Lo its lower
leaning points, leftmost and rightmost respectively. Let us call U its only upper
leaning point. If I and E stand as the first and last point of this maximal
segment. We have:

F(I)=F(L))=E and B(E)=B(Ly) =1

Proof. Since this maximal segment is vertex-supported, its slope is defined
by [L1Ls], hence any subset of this mazimal segment containing [L1Ls] has
the same slope. Therefore [IE] and [L1E] have the same slope, thus F(I) =
F(Ly) = E. Similarly [L1E] and [IE] have the same slope, entailing B(E) =
B(Ls)= I. O

Lemma 3.8. Two distinct vertex-supported segments MS = [IL1L2E] and
MS’ = [I'LY LLE'] cannot have their lower leaning points ordered as follow:

LI1§L1<L2§L/2

Proof. If preceding equality holds between M S and M S’, the extremities of M S
can only be set in four positions considering L) and LY. We show that none of
them can be achieved:

MS cannot be strictly contained into [L} LY since [L)L4)] is a DSS.

If MS eatends over [LyLL] then preceding inequality does not hold, because
MS and M S’ would be identical, which raise a contradiction.

Consider now that M S has its first point before L and its last point before

5, we get a contradiction because F(L1) = E (Lemma 3.7) and F(L1) > Lf

since [L1L}] is a DSS.

Similarly if the first point of MS is after L} and its last point after L},
B(Ly) = I (Lemma 3.7) and B(Ls) < L since [L} L2] is a DSS. This concludes
the proof. [

11



We now relate the number of vertex-supported segments to the number of
digital edges.

Proposition 3.9. On a vertex of the CDP there is at most one vertex-supported
segment with an even depth.

Proof. The proof is made by contradiction. Consider there ezists two vertex-
supported segments of even depth. Say MS of depth zo; with Ly, Lo its lower
leaning points (leftmost and rightmost) and Us as upper leaning point; MS’ of
depth zy; with Ly, Ly its lower leaning points and Uz as upper leaning point
(they share the same vertex as upper leaning point). If Ly = L} , then M .S and
MS’ coincide since they are mazimal segments (using Lemma 3.7). Consider
now that L) < Ly, that is the leftmost lower leaning point of M S’ lays before the
one of MS on the convex discrete curve. In this case it is clear that [L1Us] C
[L1Us]. Thus [L1Us] = U[L1Us] with I' some left strict factor of [L1Us]. From
Proposition B.2 [L1Us] has E(z2;—1)"2~" as a right factor. We can now write
[LYUs) = VIE(22i-1)"~Y with | some left strict factor of [L1Us], and [L}Us]
contains the pattern E(z9;—1). Since [L{Us] is a right subpart of the pattern
E(25;), E(22i-1) is a right strict factor of F(zy;).

If z9; = [0, u1, . . ., u2i—1, u2;), from Proposition B.3 the slope zéj has zo;_2 as
a 2i — 2 convergent, and ub;, | > uzi—1. Thus z3; = [0,u1,...
e Ui, U Uy ,u’2j]. From Proposition B.2 (switching Uy Ly with Us Lo

in the proposition) we have £L'(UzLz2) = q2i—1 + p2i—1 = u2i—1(q2i—2 + p2i—2) +
G2i—3 + p2i-s and L' (UsLy) = qh; | +ph; ;-

From the writing of L' (U2L%) and with ub; | > ugi—1, we have £} (UaLy) >
LY(UzL2). As a result we have : L} < Ly < Uy < Ly < L. Using Lemma 3.8
we get a contradiction. [

Similarly, we obtain the same result for a segment with an odd depth.

Proposition 3.10. On a vertex of the CDP there is at most one vertex-supported
segment with an odd depth.

We have seen that any edge-supported segment is associated to one edge
of the CDP and that to each vertex of the CDP at most two vertex-supported
segments can be associated. This leads to the following upper bound.

Theorem 3.11. If T" is a CDP, its number of mazimal segments is upper
bounded by three times its number of edges.

Proof. Let us consider the following numbers of mazimal segments:

e nyry are the edge-supported segments whose slope is given by their upper
leaning point. Fach of them is linked to a supporting edge.

o n7Y5} are the vertex-supported segments with an even depth.

e n9% are the vertex-supported segments with an odd depth.

It is clear that nys(D) = nyLu +nged;, +nySt. Moreover we have:
o nyry < ne(l).
o n%5t < ne(T") from Proposition 3.9.
e n9% < n.(T) from Proposition 3.10.

Consequently: nyrs < 3n.(T') O.

12



3.4 Absorption of digital edges by maximal segments and
lower bound

In the previous subsection, we provide an upper bound on the number of max-
imal segments. The lower bound however depends on the resolution m of the
digitization process and will be studied later on. In this subsection, we study
the absorption phenomena of digital edges by maximal segments.

We recall that each digital edge of the CDP is a pattern. We now try to find
how many edges can be absorbed by a single maximal segment. This is done in
three steps. We begin with Lemma 3.12 which examines under which conditions
a pattern could be extended by successive patterns so that the resulting set is
not a pattern but still a digital straight segment. We then determine how many
edges (i.e. patterns) can fit into a maximal segment, first into edge-supported
segments and secondly into vertex-supported segments (Theorem 3.13). These
results, combined together, give the lower bound for the number of maximal
segments wrt the number of edges, which is shown to be log-dependent on the
maximal slope depth of digital edges.

Lemma 3.12. We call P, a pattern of depth n whose Freeman code is E(zy).
One can build strict right and left factors (called respectively R and L) of P,
such that:

(i) [RP,], [P.L] and [RP, L] are DSS of slope z,,
(ii) R and L are patterns (or successions of the same pattern) ,
(iii) RP,, P,L and RP,L are not patterns,

(iv) the slope of R is greater than that of P, and the slope of P, is greater than
that of L,

(v) mazimal depth of slope of R and L depends on parity of n:
Depth of P, | mazimal depth of R | mazimal depth of L
2i+1 2141 21
21 21— 1 21
their Freeman moves are such that:

Freeman moves of P, | Freeman moves of R Freeman moves of L
E(z2i41) E(z9:)"* 1 7" E(22i-1) BE(zg)" 17!
E(z2:) E(zgi—1)" " E(z2i—2)E(22i-1)" "
(vi) Depth of factors obtained by substracting R or L from P,, depends on par-
ity of n:
Depth of P,, | depth of P, ~ R | depth of P, " L
2i4+1 24 2i+1
21 24 2i —1

their Freeman moves are such that:

Freeman moves of P, | Freeman moves of P, ~ R | Freeman moves of P, ~ L
E(z2i41) E(z:)" E(22:)"E(22i-1)
E(z2:) E(z9i-2)F(22i-1)" E(z2i-1)"

Proof. Since R and L are strict factors of P, their Freeman moves are com-
patible with those of E(zy,), giving same slope when R,P,, and L are put together.
Thus [RP,), [P,L] and [RP, L] are DSS of slope z,. This concludes (i). From
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digital straightness we clearly have digital convezity (see [15]). Upper leaning
points of this DSS are located at extremities of P, .

We simply choose among strict factors R and L those that are patterns so
that they fit descriptions given in Eq. (5) and Eq. (6). Which brings (ii).

We may now describe them given the parity of n. Consider the case where
n s odd (say n = 2i+ 1), from Eq. (5) we get: R = E(z9;)"?' " "E(22,—1) and
L = E(z9;)"+ = with r > 0 and | > 0. If R and L are longer patterns, they
are not anymore strict factors of Paiy1. We see that R is a pattern of depth
2i+ 1 and that L is a succession of the pattern E(z2;), with a depth of 2i. This
brings (v)A in the odd case.

The slope of R equals 25, = [0,u1, ..., Ui, Uzip1— 7] = iz:ﬁ. From Eq. (2)
i Ph; 1 +TD2i . .
and Eq. (3) we get that z;ii = qzii_‘_w%. The sign of z4;, | — Z2i41 is that of

Phi142i — Q5i41P2i, and is positive (see Eq. (1)). Thus the slope of R is greater
than that of Pa;y1. Same reasoning applied to zo;41 — z9; brings that the slope
of Paiy1 is greater than that of L. Thus (iv) holds in the odd case.

Consider now that n is even (say n = 2i), from Eq. (6) we get: R =
E(29;-1)">~" and L = E(z9;_2)F(22;_1)">~\. If R and L are longer patterns,
they are not anymore strict factors of Ps;. Clearly, R has a depth of 2i — 1 and
that of L equals 2i. This brings (v) in the even case.

The slope of L equals zb;, = [0, u1, ..., ugi—1,u2; — ] = i From Eq. (2) and

a3,
Eq. (3) we get that % = %. The sign of zo; — z5; is that of ¢5;p2i—1 —
DhiG2i—1, and is positive (see Eq. (1)). Thus the slope of P, is greater than that
of L. Same reasoning applied to zo;_1 — z2; brings that the slope of R is greater
than that of P,,. Thus (iv) holds in the even case.

From Eq. (6) and Eq. (5) and preceding results it is clear that RP,, P,L
and RP, L cannot be described as patterns which brings (iii).

If n is odd then the factor obtained by substracting R from Psiy1 equals
E(z2;)" and substracting L from Py;y1 gives E(z2;) E(29,-1). In the even case
the factor obtained by substracting R from Ps; equals F(za;—2)E(z2,—1)" and
substracting L from Py; gives E(z9;_1)!. Thus (vi) holds. [

Theorem 3.13 shows that the maximal number of digital edges that may be
contained in a maximal segment linearly depends on the depth of its slope.

Theorem 3.13. We have the following:

1. Let E be a supporting edge whose slope has a depth n, n > 2, then the edge-
supported mazimal segment associated with E includes at most n other
edges on each side of E.

2. Any vertex-supported mazimal segment whose slope has a depth n includes
at most 2n edges.

Proof. We only provide the proof of the first result and refer to [9] for a similar
proof of the second result.
We construct 2n digital edges around E:

L] (Ri)lgign at left Of E,
L] (Li)lgign at T'Zght Of E.
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These edges are such that [R,, ... R;...RiELy...L;...Ly] is a DSS of slope
zn = a/b and has no other upper leaning points but those located on E. E
may contain several times the pattern E(z,). It is clear that R, ... R;... Ry
(resp. Li...Lj;...Ly) has to be a right (resp. left) strict factor of E(z,) to be
compatible with it. Moreover R; is a right strict factor of E(z,) ~ Ri—1... Ry
and L; is a left strict factor of E(z,) ~ L1...L;—1. From Proposition 3.1 if
(Ri)i<i<n and (L;)1<i<n are patterns or successions of the same pattern, then
they are digital edges. From Eq. (5) and Eq. (6) two successive digital edges
with same depth (say n) cannot form a right or left strict factor of a pattern
with same depth. Thus depths of (R;)1<i<n and (L;)1<i<n are decreasing when i
increases. Moreover to fulfill convezity properties, slopes of edges are decreasing
from R, to L,.

We now build (R;)1<i<n when nis odd (sayn = 2i+1). From Lemma 8.12 (v),
Ry has a depth that equals 2i + 1 and Rs is a right strict factor of E(z,) ~ R1
which is by Lemma 3.12 (vi) a pattern of depth 2i. Applying again Lemma 3.12(v)
brings Ro with a depth of 20 — 1. Since complexities are decreasing, we only take
into account the right part of F(z,)~ R1 Ry which has a depth equaling at most
2i — 1, that is F(z2;-1)"™. We can now build R3 and R4 using Lemma 8.12 on
E(z2i-1). Applying the same reasoning recursively brings other edges as shown
on Table 1. Lemma 3.12( iv) also implies decreasing slopes, that is digital con-
vexity.

Constructions for the three other cases are given in Tables 1 and 2 and
follow the same reasoning. To satisfy full decomposition each (uy)i<n has to
be equal or greater than 2. If this condition is not meet for some k, than steps
associated with it (e.g. any factors containing wy, — r; or uy —l; as powers of
some pattern) are skipped. This concludes the proof. O

The following corollary is based on the proof of Theorem 3.13 by taking the
worst-case construction. A similar result related to linear integer programming
is in [24]. It may also be obtained by viewing standard lines as intersection of
two knapsack polytopes [14].

Corollary 3.14. The shortest pattern of a supporting edge for which its mazxi-
mal segment may contain 2n + 1 digital edge is z, = [0,2,...,2]. If the DCP is
enclosed in a m x m grid, then the mazimal number n of digital edges included
in one mazximal segment is upper bounded as:

< log (2v/2m)
~log(1+v2)

Proof. From Theorem 3.13 we know that mazimal segments may contain at
most 2n + 1 digital edges. We further know that these ones are edge-supported
segments. We now look for the shortest pattern. To fulfill all conditions, if
Zn = [0,u1,...,uy,] is the slope of the pattern then each u;,1 < i < n, has to
be greater or equal than two. The length of each pattern z, (say LY(E(z,)))
can be computed using Eq (2) and (3) and can be expressed as a functional of

Ui,y ..., U,. A closer look these equations brings that: W > 0 for each
1 <i<n. As a result, the shortest pattern that matches Theorem 3.13 is such
that: 1 <i<n wu; =2 and ug = 0.

Asymptotically, we get the number L = [0,2,...,2,...], which is a quadratic
number equal to —1 + V2. Its recursive characterization is U, = 2U,—1 + Uy —o
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Table 1: Constructions of (R;)1<i<n and (L;)1<i<n given n odd .
Constructions of (R;)1<i<n, when n = 2i+ 1

Factor Freeman moves Depth
Ry E(Zgi)u%*liTlE(ZQi,l) 2141
Ry E(Zgi_l)u%_rz 2t—1
R3 E(Zgifg)u%*liTSE(ZQi,g) 21 —1
Ry E(Zgi_3)u27"’2_7“4 21 —3
Ry E(ziq1-9;)"2 2% "% 2i+1-2j

Roji1 | E(zgi_oj)"t1 =27 7240 F(295_1_95) | 204+ 1—2j

Roit1 Qur—r2it1] 1

Constructions of (L;)1<i<n, when n =2+ 1

Factor Freeman moves Depth
Ly E(Zgi)u%*l_ll 21
LQ E(ZQifz)E(Zzifl)u2iil2 21
Ls E(Z2Z_72)u2i,17l3 21— 2

Ly E(22i74)E(22i73)u2i727l4 21— 2

L2j E(Z2i72j)E(Z2i+172j)u2i+272j7l2j 20+ 2 — 2]
Lajt1 E(22i—9;)"2i+1 -2~ it 2i—2j

L2i+1 Qur—l2i+1 0

Un+1

with Uy = 0 and Uy = 1. We also have z, = [0,2,...,2] = 2=,
——
n times
Solving it leads to U,, = @ (1 +v2)" — (1 — v/2)"). Hence asymptotically,
U, ~ %(1 +2)" and lim,, o 22— = L.

Un+1 -
Recall that z, is the n-th convergent of L. We have L*(E(2,)) = Up +Up 1.
To fit into an m X m grid, z, s such that U,+1 < m. We thus obtain that
log(2v2m)
< log(14++/2) L0

We give now the upper and lower bounds for the number of maximal seg-
ments on finite CDP.

Theorem 3.15. The number of maximal segments on a CDP enclosed into a
m X m grid is bounded by:

ne(I")
— < ') < 3n.(T
Kllogm—i—Kg_nMs( )_ n()

; -2 _ log8(v2-1)
with K1 = oz (11732) and Ko = og (11.v/3)
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Table 2: Constructions of (R;)1<i<n and (L;)1<i<n given n even.
Constructions of (R;)1<i<n When n = 24

Factor Freeman moves Depth
Ry E(Zgifl)u%irl 21 —1
R> E(Zgi_g)u2i’1_T2E(22i_3) 2t —1
Rs3 E(Zgifg)Um*ziTS 21— 3

Ry E(Zgi_4)u2i’3_T4E(22i_5) 21— 3

jo E(Zgifgj)u2i+1*2j77«2]‘E(22i71,2j) 204+ 1— 2]

Rojn E(zgi—1-g5)" 2 "4 2i—1-2j
Ro; Qwr—rei] 1
Constructions of (L;)1<;<n, When n = 2¢

Factor Freeman moves Depth
L4 E(Zgi_g)E(Zgi_l)u%_ll 21
Lo E(Zgi_g)u%’l_lz 21— 2
L3 E(Zgi,4)E(Zgi,3)u2i*2il3 21— 2
Ly E(22i74)u2i*37l4 21— 4
L2j E(Zgifgj)u2i+1*2jil2j 2 — 2]

Loji1 | E(zoi—0_0;)E(zi_1_9;)"2—2 12i+1 [ 2 — 2j
Lo; RS 0

Proof. We know that mazimal segments cover the entire discrete curve and

that a mazimal segment of depth n contains at most 2n + 1 digital edges. Thus

there cannot be less mazimal segments than n.(I')/(2n+1). Preceding corollary
yields:

o log(2v/2m)

~ log(1 4 v/2)

Which leads to the inequality:

ne(I')log(1 + v2)
2logm + log8(v/2 — 1)

Theorem 3.11 brings the upper bound, putting both inequalities together bring:

ne(l—‘)
< <
<nus(l) < 5 7

ne(T)

— < nys(T) <3n.(T
Kllogm—l—Kg_nMS( ) < 3ne(T)

4 Length of maximal digital straight segments

We present in this part how the length of maximal segments and of digital edges
are tightly intertwined. We call £! the length estimator based on the Minkowski
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distance. For a vector u we write £!(u) and for a 4-connected discrete path
[AB] we write £!([AB]). Note that if [AB] is a DSS then £!([AB]) = £L!(AB).

We begin our study by comparing the length of edge-supported with the
length of its associated supporting edge (Proposition 4.1). We similarly study
vertex-supported segments (Proposition 4.2).

Proposition 4.1. Let [ViViy1] be a supporting edge of slope ¢ made of f pat-
terns (a,b) and let M S be the mazimal segment associated with it (Lemma 3.5).
Their lengths are linked by the inequalities:

LY (ViVies) < £H(MS) < %cl(vmﬂ) o

1
g,cl(MS) < L'ViViey1) < LY M S) < 3L (ViVier 1)

Proof. Vertices Vi, and Vi1 are leftmost and rightmost upper leaning points
of MS. The points Vi, — (b,a), Viy1 + (b, a) while clearly upper leaning points
of the standard line going through [ViVii1] cannot belong to the CDP. Hence
MS cannot extend further of its supporting edge of more than |a|+|b| — 1 points
on both sides. Consequently L'(MS) < L'(ViViy1) + 2(la| + |b] — 1). Using
LY (ViVigr) = f(lal+[b]) brings: £ (ViVig1) < LY (M S)) < ZELY (Vi Vi) —2.
Worst cases bring LY(ViViy1) < LY(MS) < 3L (ViViy1) O

Proposition 4.2. Let M S be a vertez-supported segment and Vy, its upper lean-
ing point which is a vertex of the CDP. The length of this maximal segment is
upper bounded by:

LYMS) <4 (L Vi1 Vi) + L1 (ViVie1))

Proof. We call Ly, Lo the leftmost and rightmost lower leaning points and
Us =V, the upper leaning point (see Fig. 3). Suppose that M S has a slope with
an odd depth (say 2i +1).

Proposition B.1 implies £L'(L1Us) = qo;+p2;i. There is clearly a right part of
[L1Us] (i.e. [L1V]) that is contained in [Vi—1Vi] and touches Vi,. The pattern
E(z2i-1)"2" is a right factor of [L1Us] (Proposition B.1 again). It is indeed a
right factor of [Vi—1Vi] too, since it cannot extends further than Vi—i to the
left without defining a longer digital edge. We get [Vi—1Vi] D E(z2;-1)"** and
immediately LY (Vi,_1Vi) > ugi LY (E(22;_1)) = u2i(q2i—1 + D2i_1).

From Eq. (2) and Eq. (3), we have: q2; + p2i = u2i(q2i—1 + p2i—1) + q2i—2 +
P2i—o and qai—o + P2i—2 < qoi—1 + p2i—1. We obtain immediately El(Lle) =
G2i + p2i < (u2; + 1)(q2i—1 + p2i—1). By comparing this length to the length of
the digital edge [Vi.—1Vi], we get:

ug; + 1
U24

LM(L1U,) < LY Vi1 Vi)

Proposition B.1 and similar arguments on [Vi.Viy1] bring :

LY(UsLy) < —25L L1V, Vi)
Ugip1 — 1

Worst cases are then L (L1 Uz) < 2L (V,_1Vy) and L1 (UzLa) < 2L (Vi Vig1)-
The case where M S has a slope with an even depth (say 2i) uses Proposition B.2
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and for the same reasons as above leads to:

£1(LaUg) € —2= L1 (Viea Vi) < 2L (Vi Vi)
2 —
1 ugi—1+1 4 1
L (UzLg) < ﬁﬁ (Ve Viey1) <2L7(VieVit )

Since MS has only one upper leaning point, it cannot be extended further
than L£'(UzL2) on the left and L1 (L1Uz) on the right (Lemma 3.5). Thus, we
get:

LYMS) <AL (Vi Vi) + L' (ViVigr)) O

We are now able to compare the total length of maximal segments with the
perimeter of the DCP.

Proposition 4.3. Let I' be a CDP, nys(I') the number of mazimal segment
on I, then :
> LY(MS;) < 19Per(T)
i€nns(T)
Proof. With the notations of Theorem 3.11 and with slight abuse of notations,
we decompose the total length as:
S LM MS) =Y LY MSury)+ Y LYMSHE) + > LN MSTET)

dd
nMS NULU nivL nLuL

Let us now focus on LY(MSyry), using Proposition 4.1 we get :

nuLu

> LN MSyrv) <3 > LY([ViVis))

NULU NULU

T') and the fact that each digital edge appears at most once

Using nury < ne(
LY([Vi.Vies1]) < Per(T) entailing that:

lead us to Y

NUuLU

> LY MSyLy) < 3Per(T)
nuLu
Considering ), 044 LY (MS94 ) and 2 neuen LY (M S$9¢1) with Proposition 4.2
we have:

LN MS) <4 > (LM (Vi1 Vi) + £ ([ViVita)))

odd odd

"Lur "LuL
Z LY MSTEE) <4 Z NI AR A)))
nLUT nLvr

Considering that n93, < n.(T') (from Proposition 3.10) and n$4$% < n(T)
(from Proposition 3.9) and that each digital edge appears at most once, we clearly
get :

oot sy <4l Y0 LYWaVi) + D LH([ViViga)) | < 8Per(T)
n%%/dL n%d[?L n%%/dL
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Soooctsgpy <A >0 LNV VRD) + Y LY([ViVia]) | < 8Per(T)

Eventually putting everything together brings:
> LY (MS;) < 19Per(l) O
nms

We are now able to bound the average length of maximal segments wrt the
number of edges on a CDP and the grid in which it is enclosed.

Theorem 4.4. Let I' be a CDP enclosed in a m X m grid, we have :
Per(I') - D onars LH(MS;) - 19Per(T)(K7logm + K>)
3n.(T') — nys(T) - ne(T)

with Ky and Ky defined as in Theorem 3.15.

Proof. From Theorem 3.15 we get :
1 < 1 < Kilogm + Ko
3ne(T) ~ nas(D) ne(T)
And from Proposition 4.3:
> L£N(MS;) < 19Per(T)

nmMms

Since mazximal segments cover the entire discrete curve we have:
Per(T') < Z LY (MS;)
nms

It is now easy to see that:

Per(I') - D onags LH(MS)) - 19Per(T)(K7logm + K»)
3n.(T') — nys(T) - ne(T)
We have thus shown that, on convex digital polygons, the average size of
maximal segments is essentially proportional to the average size of the digital

edges. Maximal segments may be slightly longer than digital edges on average
by a logarithmic factor of the size of the grid containing the digital shape.

5 Asymptotic convergence

We may now turn to a direct application of the previous results of the paper by
studying the asymptotic properties of discrete geometric estimators on digitized
shapes. We therefore consider a plane convex body S which is contained in the
square [0, 1] x [0, 1] (w.L.o.g.). Furthermore, we assume that its boundary v = 95
is C3 with everywhere strictly positive curvature. This assumption is not very
restrictive since people are mostly interested in regular shapes. Furthermore,
the results of this section remains valid if the shape can be divided into a finite
number of convex and concave parts; each one is then treated separately. The
digitization of S with step 1/m defines a digital convex polygon I'(m) inscribed
in a m x m grid. We first examine the asymptotic behavior of the maximal
segments of I'(m), both theoretically and experimentally. We then study the
asymptotic convergence of a discrete curvature estimator.
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Figure 6: For both curves, the digitized shape is a disk of radius 1 and the
abscissa is the digitization resolution. Left: plot in log-space of the L'-size
of maximal segments. Right: plot of the mean and standard deviation of the
absolute error of curvature estimation, |k — 1| (expected curvature is 1).

5.1 Asymptotic behavior of maximal segments

The next theorem summarizes the asymptotic average size of maximal segments
with respect to the grid size m.

Theorem 5.1. The average L'-length L(T'(m)) of the mazimal segments of
T'(m) has the following asymptotic bounds:

O(m?) < L(T(m)) < ©(m? logm). (7)
Proof. Theorem 4.4 gives for the DCP T'(m) the following inequality:

Per(I') - D onas LH(MS)) - 19Per(T)(K7logm + K»)
3n.(T") — nars - ne(T)

where K1 and Ko are two constants.

Since T'(m) is convex and included in the subset m x m of the digital plane,
its perimeter Per(T'(m)) is upper bounded by 4m. Furthermore, for a sufficiently
large m, this perimeter is lower bounded by p(T')m, where p(T') is twice the sum
of the width and height of the bounding box of I'. On the other hand, Theorem 2.7
indicates that its number of edges n.(I'(m)) is lower bounded by ¢1(S)m3 and

upper bounded by CQ(S)m%. Putting everything together gives:

p(L)m
3co(D)m3

19 x 4m x (Kl 1ogm+K2)

e (TYym3

< L(T'(m)) <

which is once reduced what we wanted to show. [

Although there are points on a shape boundary around which maximal seg-
ments grow as fast as O(m?) (the critical points in [19]), most of them do not
grow as fast.

On average, maximal segments grows as G(m%), this fact is confirmed with
experiments. Fig. 6, left, plots the size of maximal segments for a disk digitized
with increasing resolution.
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5.2 Asymptotic convergence of discrete geometric estima-
tors

A useful property that a discrete geometric estimator may have is to converge
toward the geometric quantity of the continuous shape boundary when the dig-
itization grid gets finer [4, 5, 17].

Of course, interesting discrete geometric estimator should converge for a
large class of curves. We now recall the definition of a discrete curvature esti-
mator based on DSS recognition [4].

Definition 5.2. Let P be any point on a digital contour T in a grid of step ﬁ,
Q = B(P) and R = F(P) are the extremities of the longest DSS starting from
P (called half-tangents). Then the curvature estimator by circumcircle &(P) is
the inverse of the radius of the circle circumscribed to P, Q and R, rescaled by
the resolution m.

Experiments show that this estimator rather correctly estimates the curva-
ture of discrete circles on average (=~ 20% error) at low resolution. It seems
indeed better than any other curvature estimators proposed in the litterature.
Theorem B.4 of [4] demonstrates the asymptotic convergence of this curvature
estimator, subject to the conjecture:

Conjecture 5.3. Half-tangents on digitized boundaries grow at a rate of@(m%)
with the resolution m.

However, with our study of maximal segments, we can state that

Claim 5.4. Conjecture 5.3 is not verified for digitizations of C3-curves with
strictly positive curvature. We cannot conclude on the asymptotic convergence
of the curvature estimator by circumcircle.

Proof. It is enough to note that half-tangents, being DSS, are included in mazx-
imal segments and may not be longer. Thus Theorem 5.1 concludes. [

The asymptotic convergence of a curvature estimator is thus still an open
problem. Furthermore, precise experimental evaluation of this estimator indi-
cates that it is most certainly not asymptotically convergent, although it is on
average one of the most stable digital curvature estimator (see Fig. 6, right).
Former experimental evaluations of this estimator were averaging the curvature
estimates on all contour points. The convergence of the average of all curvatures
does not induce the convergence of the curvature at one point.

6 Conclusion

As a conclusion, we have studied digital straight segments lying on convex dig-
ital shapes. We have shown several results relating quantities over maximal
segments to the same quantities over digital edges. For shapes digitized at in-
creasing resolutions, their asymptotic behaviour has also been studied. Contrary
to what was thought before in the litterature, maximal segments are shown to
grow essentially at a rate of m3 on average. These results will enable us in the
future to find convergence rates for digital tangent estimators as well as defining
a convergent digital curvature estimator.
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A Digitization and 4 connected curves

Lemma A.1. Let S be a convex subset of R? then D(S) = D(conv(D(S)))
Proof. First we prove that D(S) is always a subset of D(conv(D(95))):

D(S) C conv(D(S))
D(D(S)) € D(conv(D(S5)))
D(S) < D(conv(D(5)))

We now prove that each element of D(conv(D(S5))) is in D(S). Let x €
D(conv(D(S))), then x € conv(D(S)). Thus x = >, \ip; with Y, \; = 1 and
Ai >0 for all i. As for all i, p; € D(S), p; € S. Since S is a convex shape,
reS. Asz € Z? xeD(S). O

Lemma A.2. For a given S where S is a plane convex body with C> boundary
and positive curvature, there exists mg such that for all m > mg, D,,(S) is
connected.

Proof. There exists ro such that S is par(rg) — reqular. Thus let D,,(S) with
m > % This entails that m - S is at least par(2) — regular.

Let us now suppose that for resolutions m larger that T—20, D (S) may have
several connected components. Let Cp,Co be two connected component of Dy, (S)
and let py, p2 be digital points in each component, C1 and Ca respectively.

Considering the complement of D,,(S) in Z? there eists points outside
D (S). We pick a point p) such that we can build a 4-connected path T
from py to p} whom only point outside Cy is pj. Co is such that it is or-
dered and each element has a successor and a predecessor excepted the first and
last elements. Moreover this path is chosen such that there exists a point of the
boundary of m-S whom inside osculating ball (of radius mry) contains one point
of Coo which is not p). The same reasoning for Co leads to the 4-connected path
Cc and the point pl.

As py and py are both on the boundary of m-S, there exists a continuous path
on the boundary of m-S from pl to p,. LetV be the union of the inside osculating
ball of radius mry for each point of this continuous path. Since each ball has a
radius larger than 2, the Gauss digitization of V is 4-connected and inside the
Gauss digitization of m - S. This entails that there exists a 4-connected digital
path between p1 and p2. As a result, D,,(S) has only one connected component
for resolution larger that a threshold depending on the par(r)regularity of S. O

Remark The two preceeding lemmas entail that for large resolution, the
Gauss digitization of convex shape with C? boundary and positive curvature are
always well-composed in the sense of [12, 21].

B Preliminary relations involving patterns

This section presents several properties related to patterns of DSS. They are
used all along the paper. We may now compute vector relations between leaning
points (upper and lower) inside a pattern. In the following we consider a DSS
(a,b,0) in the first octant starting at the origin and ending at its second lower
leaning point (whose coordinate along the z-axis is positive). We define a/b =
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zn = [0,u1,. .., uy] for some n. Leaning points will be called Uy, Ly, Uz and Loy
as shown in Fig. 3. By definition U3 Uy = L1La = (b,a) and U;L; = UsLs.
We recall that the Freeman moves of [U;L4] are the same as those of [UzLs].
Furthermore Freeman moves between U; and U, form the pattern (a,b) and
those between L; and Lo form the reversed pattern (a,b). Proposition B.1
and Proposition B.2 indicate more precisely where leaning points lie within a
pattern.

Proposition B.1. A pattern with an odd depth (say n = 2i + 1) is such that
ULy = (u2it1 —1)(q2is p2i) + (q2i—1,p2i—1) + (1, —=1) and L1 Uz = (g2; — 1, p2i +
1). Moreover the DSS [U1L1] has E(z2;)">+1~! as a left factor, and the DSS
[L1Us] has E(z2;-1)"*" as a right factor.

Proof. From Eq. (1) we have: paii1qai — P2iqeit1 = (—1)%F1HL = 1 which
can be rewritten as: aqo; — bpo; = 1. Thus qo; and ps; are clearly the Bézout
coefficients of (a,b). One can check that point (b+1— qo;,a—1—pa;) is Ly: its
remainder is a + b — 1 and its x-coordinate while positive is smaller than b. We
immediately get U1Ly = (b+ 1 — qo5,a — 1 — pay).

Using Eq. (3) yields: U1Ly = ((u2i41 — 1)g2i + g2i—1 + 1, (ugi+1 — D)p2s; +
p2i—1 — 1). From LUy = —U;Ly + U1Us, we further get that LUy =
(q2i — 1,p2; + 1). From Eq. (5) E(z29;)"*+ =" is a left factor of [U1Us] but
also of [U1L1]. Writing E(z2i11) as E(z2;)"** " E(29;_2)E(29;_1)"* 1, and
expanding L1 Uz as (u2;q2i—1 + qoi—2 — 1, u2ip2i—1 + p2i—2 + 1) with Eq. (2), we
see that E(z2,-1)"" is a right factor of [L1Us]. O

Proposition B.2. A pattern with an even depth (say n = 2i) is such that
U1L1 = (g2i—1+1, p2i—1—1) and L1 Uz = (u2;—1)(q2i—1, p2i—1)+(q2i—2, p2i—2)+
(=1,1). Moreover the DSS [U1L1] has E(z2,—2)"*~' as a left factor, and the
DSS [L1Us] has E(z2;-1)"2~! as a right factor.

The proof is similar to the proof of Proposition B.1 and may be found in [9].
Patterns and sub-patterns that are right or left factors have their slopes closely
related, as shown by Proposition B.3 and Proposition B.4.

Proposition B.3. If the odd pattern E(25,,,) with z5, 1 = [0,u},...,us, ]
is a right factor of the pattern E(zy) with zx = [0,u1, ..., u] then:

r ’
Zop = Z2p and Ugpiq < Uzptl

Proof. Consider two patterns E(zx) and E(2y,, 1) with zx = [0,uy, ..., ux] and
Zopi1 = [0,uy, .. uh, ] From Eq (5) and (6) it is clear that E(zy) always
ends with an odd pattern whatever k. Consider there exists i (2i +1 < k) such
that E(z2;-1) € E(25,41) € E(22i41) as shown on Fig. 7. If E(25,,,) equals
E(22i41) then from unicity of decomposition in simple continued fraction we get
p =1 and zépﬂ = 2op+1. Which concludes this case. Otherwise looking at the
decomposition of E(ze,41) from Eq (5) and (6), there exists j, with 0 < j <
Ugiv1 such that E(z9;) E(29;_1) C E(zépﬂ) C E(22;) T E(29i_1), whose slopes
are [0,uq,...,u2;, 7] and [0,uq,... ,us,j + 1]. Any discrete path P such that
E(22;) E(22i-1) C P € E(29;)7 T E(22;_1) analyzed by the standard DSS recog-

nition algorithm [8] is recognized as a DSS with a slope equal to [0, uy, ..., ug, j].
Thus the slope of E(z3, 1) is also [0,u1, ..., u2;, j]. More precisely, being a pat-
tern, E(z5,1) = E([0,u1, ..., u,j]), this entails 25,1 = [0,u1, ..., u, j| and
p=1i.
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22i4+1 = 23 = [0,6,2,3] = é

Consider now that there is no i such that: E(z2;—1) C E(25,,1) C E(22i41)-
This mean that we cannot find two odd sub-patterns belonging to E(zx) bounding
E(z5,.1). As a result we have: E(z1,—1) C E(25,41) C E(2x) with k being even,
we have E(z) = E(zk—2)E(zk—1)" and we may consider two cases:

o there exist j such that E(zx_1)’ C E(z5,,,) C E(zk—1)""", with j+1 <
Uk,

o or E(zo1)™ C E(zh,,,) € ()

In the first case, it is clear that E(zy,, ) is recognized by the standard DSS
recognition algorithm as a DSS of slope zi—1 since it is bounded by two discrete
paths of slope zx—1. In this case we get zi—1 = zépH.

In the other case, let us note that E(z,—1) C E(25,,1), which implies that
E(z1—1) is bounded by two odd sub-patterns of E(z5,,1). Thus using the same
reasoning as earlier-on we get z;_o = z_o and ux—1 < uj,_,. From Eq (5) and
(6), it is clear that every pattern begin with even pattern whatever their depth.
As a result E(zx—2) is a left factor of E(25,,,) and E(zx). Moreover since
B(ze-1)" G B(zhpe1) € B(zk) = E(zh2)E(zk1)™, B(24p1) and E(z)
begin with the same even pattern. Consequently E(zy) must be equal to E (25, ;).
Since those patterns do not have the same parity of depth it raises a contradiction
and this case cannot happen. This concludes the proof. [

Proposition B.4. If the even pattern E(z3,) with 25, = [0,uy, ..., us,] is a left
factor of the pattern E(zy) with zi, = [0,u1, ..., u|. We have:

/ - ’
Zop_1 = Z2p—1 and Ugy, < Uzp

Proof. see [9]. O
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