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Abstra
t

Dis
rete geometri
 estimators approa
h geometri
 quantities on digitized

shapes without any knowledge of the 
ontinuous shape. A 
lassi
al yet

di�
ult problem is to show that an estimator asymptoti
ally 
onverges

toward the true geometri
 quantity as the resolution in
reases. We study

here, on Convex Digital Polygons, the 
onvergen
e of lo
al estimators

based on Digital Straight Segment (DSS). This problem is 
losely linked

to the asymptoti
 growth of maximal DSS, for whi
h we show bounds both

about their number and sizes. These results not only give better insights

about digitized 
urves but indi
ate that 
urvature estimators based on

lo
al DSS re
ognition are not likely to 
onverge. We indeed invalidate a


onje
ture whi
h was essential in the only known 
onvergen
e theorem of

a dis
rete 
urvature estimator. The proof involves results from arithmeti


properties of digital lines, digital 
onvexity, 
ombinatori
s, 
ontinued fra
-

tions and random polytopes.

1 Introdu
tion

Estimating geometri
 features of shapes or 
urves solely on their digitization

is a 
lassi
al problem in image analysis and pattern re
ognition. Some of the

geometri
 features are global to the 
urve: area, perimeter, moments. Others

are lo
al: tangents, normals, 
urvature. Algorithms that performs this task on

digitized obje
ts are 
alled dis
rete geometri
 estimators. In the following, any

algorithm estimating a lo
al geometri
 quantity within a �xed size neighborhood

will be 
alled lo
al dis
rete geometri
 estimator. We 
hoose to separate them

from lo
al adaptive dis
rete geometri
 estimators whose 
omputation windows
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may depend (in size) on the resolution. In this paper we 
onsider the Gauss

digitization as the digitization pro
ess. An interesting property these estimators

should have is to 
onverge towards the 
ontinuous geometri
 measure as the dig-

itization resolution in
reases. This property is also 
alled multi-grid 
onvergen
e

[16℄. However, few estimators have been proved to be multi-grid 
onvergent. In

all works, shapes are generally supposed to have a smooth boundary (at least

twi
e di�erentiable) and either to be 
onvex or to have a �nite number of in-

�exion points. The shape perimeter estimation has for instan
e been ta
kled in

[18℄. It proved the 
onvergen
e of a perimeter estimator based on 
urve segmen-

tation by maximal DSS. The speed of 
onvergen
e of several length estimators

has also been studied in [5℄. Klette and �uni¢ [17℄ survey results about the 
on-

vergen
e (and the speed of 
onvergen
e) of several global geometri
 estimators.

They show that dis
rete moments 
onverge toward 
ontinuous moments. As

far as we know, only C÷urjolly [4℄ has initiated works to establish the possible


onvergen
e of lo
al adaptive estimators of tangents and 
urvature. He shows

that estimators based on digital straight segment (DSS) re
ognition may 
on-

verge if the length of DSS on the digitized 
urve grows as fast as O(m
1
2 ) as the

digitization step

1
m

tends toward 0. Determining the asymptoti
 growth of DSS

along digitized 
urve is thus 
ru
ial for establishing the asymptoti
 behavior of

lo
al adaptive geometri
 estimators.

This is pre
isely the obje
tive of this paper, and is a
hieved with Theo-

rem 5.1. To do so, we relate two notions usually dis
onne
ted when studying

obje
ts in the digital plane: maximal segments de�ned on digital 
urves and

edges of 
onvex digital polygons. These notions play 
omplementary roles when

estimating geometri
 parameters on digital obje
ts, when determining its 
on-

vexity or when observing asymptoti
 properties of �ner and �ner shape digiti-

zations.

Maximal segments of a digital 
urve are DSS not stri
tly in
luded in any

other DSS of the 
urve. E�
ient algorithms have been proposed to extra
t

them and 
ompute their 
hara
teristi
s [8℄ as well as optimal algorithms to re-


over the whole set of maximal segments. They are useful when estimating

the lo
al geometry of digital 
urves like tangent dire
tion or 
urvature [10, 20℄.

Through them digital 
urves 
an be polygonized into the minimum number of

straight segments [11℄. Maximal segments 
an be used to de
ide whether or not

a polyomino is 
onvex [22℄. As stated above, when observed on obje
t digitiza-

tions, the growth rate of their length indi
ates for some geometri
 estimators if

they 
onverge toward the 
ontinuous geometri
 quantity and at whi
h rate [4℄.

On the other hand, a Convex Digital Polygon (CDP) is a set of latti
e points

whose 
onvex hull has the same digitization. Its verti
es are de�ned as its

minimum subset whose 
onvex hull has same digitization, and its edges are DSS

joining two 
onse
utive verti
es. One 
hara
terization of digital 
onvexity for a

set of latti
e points is exa
tly to be a CDP [15℄. Sin
e CDP are digitizations of


onvex shapes, their asymptoti
 properties when digitized with �ner and �ner

grid have also been studied. For instan
e, asymptoti
 bounds on the number

and length of edges have been exhibited for Gauss digitizations of smooth 
onvex

shapes [1℄, and extended to nD in [2℄. Interestingly, these bounds are related to

random polytopes and have appli
ations in linear integer programming. Along

the same lines, other works [17℄ give tight upper bounds on the number and

length of edges for CDPs ins
ribed in a grid square (a CDP is 
alled latti
e
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onvex polygon in this work).

Here we take a spe
i�
 interest in the maximal segments de�ned on the

boundary of a CDP. Intuitively, these maximal segments should have a 
lose link

with the edges of the CDP: the latter are indeed digital straight line segment, but

are not generally maximal. However few results 
an be found in the literature.

To our knowledge the only signi�
ant results are in [7, 9℄: a maximal segment

may absorb at most O(log m) edges for CDP in a m×m grid square; the length

of the smallest maximal segment is upper bounded by O(m
1
3 log m). This upper

bound had 
onsequen
es on a digital 
urvature estimator based on 
ir
ums
ribed


ir
le 
omputation [6℄, whi
h was thought to be multi-grid 
onvergent and whose

performan
es are among the best ones in pra
ti
e at low resolution. However,

as stated above, the proof of the 
onvergen
e requires that the growth of the

maximal segments follow O(m
1
2 ) [4℄. The 
onje
ture was thus disproved on

some points of the 
urve, although it was still possible that the estimator be


onvergent on a subset of the 
urve with non-zero measure.

In this work, we go further in establishing the links between maximal seg-

ments and edges of CDP. Most of the new results are obtained by using well

known re
ursive 
ombinatori
 representation of a digital straight segment 
alled

pattern.

We �rst present the main de�nitions and used tools in Se
tion 2. The notion

of pattern is given in Se
tion 2.4. We then establish links between maximal

segments and CDP (Se
tion 3). The main results of this se
tion are upper and

lower bound on the number of maximal segment. We obtain, in Se
tion 4, the

asymptoti
 upper and lower bounds for the average length of maximal segments

along a CDP en
losed in a grid of size m × m. We then study the asymptoti


of the previous results with respe
t to in
reasing m in se
tion 5. We 
on
lude

Se
tion 5 by a refutation of the hypothesis used in the previously mentioned


urvature estimator 
onvergen
e proof. We �nally present some 
on
lusions

and perspe
tives in Se
tion 6.

2 De�nitions and tools

We now pre
isely detail in this part the main obje
tives of this paper and intro-

du
e the outline of our proof. To begin, we re
all the digitization pro
ess used

in this paper and its asso
iated digital boundary. We pursue with the pre
ise

introdu
tion of the Convex Digital Polygon (CDP) followed by the notions of

standard lines and digital straight segments. The result of Balog and Bárány

[1℄ is a 
entral tool in our study and we present it as well as a sket
h of its use

in our proof. All along the paper, when results are announ
ed without proof we

always refer to the te
hni
al report [9℄ for full proofs.

2.1 Digitization and digital 
urve

Let S be a subset of R2
, its Gauss digitization is de�ned as D(S) = S ∩Z2

. We

also de�ne the dilatation of S by a real fa
tor r as r ·S. The Gauss digitization
at resolution m is then de�ned as: Dm(S) = D(m · S). Thus, the 
onsidered

digitized obje
ts are subsets of Z2
. We pre
ise that this digitization is equivalent

to interse
ting S with

1
m

Z × 1
m

Z up to a s
ale fa
tor.
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4-
onne
tedness de�nes the adja
en
y relations on digital obje
ts, whi
h

means that the neighborhood of a point in the digital plane is 
omposed of its

up and down, and left and right neighbors. Among the 4-
onne
ted subsets

of Z2
, we fo
us on 
onvex digital polygons whi
h are also 
alled latti
e 
onvex

polygons [25℄.

De�nition 2.1. A 
onvex digital polygon (CDP) Γ is a subset of the digital

plane with a single 4-
onne
ted 
omponent equal to the digitization of its 
onvex

hull, i.e. Γ = D(conv(Γ)). Its verti
es (Vi)i=1..e form the minimal subset for

whi
h Γ = D(conv(V1, . . . , Ve)).

The asymptoti
 study presented later-on in this paper requires the study of

Gauss digitizations of 
onvex shapes with C3
boundary and positive 
urvature.

We show that for resolutions larger than a threshold whi
h depends on the


onsidered shape, the Gauss digitization for su
h resolutions always brings a


onvex digital polygon. This rely on two lemmas whom proofs are presented in

appendix:

Lemma 2.2. Let S be a 
onvex subset of R2
then D(S) = D(conv(D(S)))

Lemma 2.3. For a given S where S is a plane 
onvex body with C3
boundary

and positive 
urvature, there exists mS su
h that for all m ≥ mS, Dm(S) is

4-
onne
ted.

For large enough resolution, the Gauss digitizations of 
onvex shapes with

C3
boundary and positive 
urvature have a single 4-
onne
ted 
omponent and

are equal to the digitization of the 
onvex hull of their Gauss digitization, they

are thus by de�nition 
onvex digital polygons.

We 
an now study the digital boundary of 
onvex digital polygons 
onsider-

ing the Grid Cell Model with 2-
ells (see [16℄ Chap. 2). In this model, ea
h point

of a digitized obje
t is 
onsidered as a 
losed square whom side is equal to 1. Its

topologi
al border de�nes a Jordan 
urve in R2
. Considering the interse
tion of

this 
urve with (Z+ 1
2 )× (Z+ 1

2 ), we obtain the set of elements 
onstituting the

digital boundary of our digitized obje
t. This boundary is denoted by C. We

number the points of C in
rementally as we visit them when moving 
lo
k-wise

along the topologi
al border of the digitized obje
t. Thus ea
h point on the

digital boundary has one prede
essor and one su

essor. The points of the digi-

tal boundary are noted (Ck) and a set of su

essive points ordered in
reasingly

from index i to j will be 
onveniently denoted by [CiCj ] when no ambiguities are
raised. Those notations are pi
tured on Fig. 1. Consequently in the following

we restri
t our study to the geometry of su
h 4-
onne
ted digital path.

2.2 Digital Boundary Of Convex Digital Polygons

We have de�ned 
onvex digital polygons as parti
ular subsets of Z2
and their

usual features are de�ned from those points, namely verti
es and edges. We


an 
onsider the verti
es and edges on the digital boundary of a CDP as if they

were on the CDP itself. Interestingly, the number of edges and verti
es on a

CDP and the number of edges and verti
es on its digital boundary only di�er

by a 
onstant. Indeed, all edges on the CDP whose dire
tion belongs to ]0, π
2 [

(when edges are oriented 
lo
k-wise) belong to the digital boundary of the CDP

when shifted with the ve
tor (− 1
2 , 1

2 ) (see Fig. 2). Other edges are obtained
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Figure 1: A digitized obje
t 
onsidering the Grid Cell Model with 2-
ells (left)

and its digital boundary C (right).

digital boundary

a digital edge

an edge

Figure 2: A 
onvex digital polygon, its edges and a digital edge.

symmetri
ally depending on their dire
tion. As a result, if we denote by ne(Γ)
the number of edges on the CDP, its digital boundary has at most ne(Γ) + 4
edges and at least ne(Γ).

As we 
onsider asymptoti
 studies where ne(Γ) in
reases and tend toward

in�nity, we denote by ne(Γ) these two quantities. Similarly, we denote the

perimeter by Per(Γ).
An edge is the Eu
lidean segment joining two 
onse
utive verti
es, and a

digital edge is the digital shortest 4-
onne
ted digital segment joining two 
on-

se
utive verti
es. It is 
lear that we have as many edges as digital edges and as

verti
es.

2.3 Standard line, digital straight segment, maximal seg-

ments

De�nition 2.4. (Réveillès [23℄) The set of points (x, y) of the digital plane

verifying µ ≤ ax − by < µ + |a| + |b|, with a, b and µ integer numbers, is 
alled

the standard line with slope a/b and shift µ.

The standard lines are the 4-
onne
ted dis
rete lines. The quantity ax − by
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is 
alled the remainder of the line. The points whose remainder is µ (resp.

µ + |a|+ |b| − 1) are 
alled upper (resp. lower) leaning points. Finite 
onne
ted

portions of digital lines de�ne digital straight segment.

De�nition 2.5. A set of su

essive points [CiCj ] of C is a digital straight

segment (DSS) i� there exists a standard line D(a, b, µ) 
ontaining them. The

predi
ate �[CiCj ] is a DSS� is denoted by S(i, j).

The prin
ipal upper and lower leaning points are de�ned as those with ex-

tremal x values. The �rst index j, i ≤ j, su
h that S(i, j) and ¬S(i, j + 1) is

alled the front of i. The map asso
iating any i to its front is denoted by F .

Symmetri
ally, the �rst index i su
h that S(i, j) and ¬S(i − 1, j) is 
alled the

ba
k of j and the 
orresponding mapping is denoted by B. Maximal segments

are de�ned as those DSS not stri
tly in
luded in another DSS.

These relations give the four equivalent 
hara
terisations of maximal seg-

ments:

De�nition 2.6. Any set of points [CiCj ] is 
alled a maximal segment i� any

of the following equivalent 
hara
terizations holds: (1) S(i, j) and ¬S(i, j + 1)
and ¬S(i−1, j), (2) B(j) = i and F (i) = j, (3) ∃k, i = B(k) and j = F (B(k)),
(4) ∃k′, i = B(F (k′)) and j = F (k′).

As a 
orollary, any DSS [CiCj ] (hen
e any point) belongs to at least one

maximal segment. If Γ is a 
onvex digital polygon, We will denote by nMS(Γ),
the number of maximal segment on its digital boundary.

Most of the results demonstrated here are dire
tly transposable to 8-
onne
ted


urves sin
e there is a natural bije
tive transformation between standard and

naive digital lines. In the paper, all the reasoning is made in the �rst o
tant,

but it extends naturally to the whole digital plane.

2.4 Use of Balog and Bárány's theorem

The original theorem published in [1℄ deals with the 
onvex hull of Gauss digiti-

zations of plane 
onvex body with C3
boundary and positive 
urvature for large

resolutions. Using Lemma 2.2 and Lemma 2.3 we 
omplete it with the notion

of CDP as follows:

Theorem 2.7. (Adapted from Balog, Bárány [1℄) If S is a plane 
onvex body

with C3
boundary and positive 
urvature then Dm(S) is a CDP for a big enough

m and its number of edges or verti
es asymptoti
ally follows

c1(S)m
2
3 ≤ ne(Dm(S)) ≤ c2(S)m

2
3

where the 
onstants c1(S) and c2(S) depend on extremal bounds of the 
urvatures

along S. Hen
e for a dis
 c1 and c2 are absolute 
onstants.

Theorem 2.7 is used in the sequel as follows: we build lower and upper

bounds of the number of maximal segments built on the boundary of a CDP.

The upper bound is given by Theorem 3.11 and depends only on the number

of edges of the CDP. The lower bound is given by Theorem 3.15 and relies on

both the number of edges and the resolution of the digitization. Both bounds

are then used in 
onjun
tion with Theorem 2.7 to give asymptoti
 bounds on

the number of maximal segments on the boundary of a CDP, with respe
t to
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the resolution of the digitization grid. For the length of maximal segments, we

use the same strategy. Upper bound for the length is given by Proposition 4.3

and depends only on the perimeter of the CDP. The lower bound also depends

on the perimeter of the CDP. Sin
e the perimeter 
an be related to the grid

size m, we obtain in Theorem 5.1 the asymptoti
 law of the average length of

maximal segments along the boundary of the CDP. Those bounds both depend

on m and the 
onstants appearing in Theorem 2.7.

2.5 Re
ursive de
omposition of DSS

We here re
all a few properties about patterns 
omposing DSS and their 
lose

relations with 
ontinued fra
tions. They 
onstitute a powerful tool to des
ribe

dis
rete lines with rational slopes [3, 13℄. W.l.o.g. all de�nitions and propo-

sitions stated below hold for standard lines and DSS with slopes in the �rst

o
tant (e.g.

a
b
with 0 ≤ a ≤ b). In the �rst o
tant, only two Freeman moves are

possible:

• 0 : one step to the right,

• 1 : one step up.

De�nition 2.8. Given a standard line (a, b, µ), we 
all pattern of 
hara
teris-

ti
s (a, b) the su

ession of Freeman moves between any two 
onse
utive upper

leaning points. The Freeman moves de�ned between any two 
onse
utive lower

leaning points is the previous word read from ba
k to front and is 
alled the

reversed pattern.

A pattern (a, b) embedded anywhere in the digital plane is obviously a DSS

(a, b, µ) for some µ. Sin
e a DSS has at least either two upper or two lower

leaning points, a DSS (a, b, µ) 
ontains at least one pattern or one reversed

pattern of 
hara
teristi
s (a, b).
Its is important to note that if a digital straight segment of 
hara
teristi
s

(a, b, µ) 
ontains δ pattern (a, b) and δ′ reversed-pattern (a, b) then it has exa
tly
δ + 1 upper leaning points and δ′ + 1 lower leaning points. Moreover, we have

δ′ = δ±1. However if a digital straight segment has �ve leaning point it may be


onstituted of two patterns and one reversed-pattern or two reversed-patterns

and one pattern. As a result the number of leaning points of a digital straight

segment 
annot pre
isely des
ribe the number of patterns or reversed-patterns.

Even if the arithmeti
 approa
h is a powerful tool for digital straight segment

re
ognition, other approa
h may reveal useful to get analyti
 properties. We

here re
all one of those approa
hes whi
h is 
onne
ted to 
ontinued fra
tions.

There exists re
ursive transformations for 
omputing the pattern of a stan-

dard line from the simple 
ontinued fra
tion of its slope (see [3℄, [25℄ Chap. 4

and [16℄ Chap. 9). We 
hoose to fo
us on Berstel approa
h, whi
h better suits

our purpose.

A 
ontinued fra
tion is an expression of the form:

z = 0 +
1

u1 +
1

. . . +
1

un + . . .
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onveniently denoted [0, u1, . . . , un, . . .]. The ui are 
alled elements or partial


oe�
ient and the 
ontinued fra
tion formed with the k + 1 �rst partial 
oe�-


ient is said to be a k-th 
onvergent of z and is a rational number denoted by

zk. The depth of a k-th 
onvergent equals k. We 
onveniently denote pk the

numerator (resp. qk the denominator) of a k-th 
onvergent.

We re
all a few more relations regarding the way 
onvergents are related and

whi
h will be used later on in this paper:

∀k ≥ 1 pkqk−1 − pk−1qk = (−1)k+1
(1)

p0 = 0 p−1 = 1 ∀k ≥ 1 pk = ukpk−1 + pk−2 (2)

q0 = 1 q−1 = 0 ∀k ≥ 1 qk = ukqk−1 + qk−2 (3)

z0 < z2 < . . . < z2i < . . . < z < . . . < z2i+1 < . . . < z3 < z1 (4)

Continued fra
tions 
an be �nite or in�nite, we fo
us on the 
ase of rational

slopes of lines in the �rst o
tant, that is �nite 
ontinued fra
tions between 0 and

1. Then for ea
h i, ui is a stri
tly positive integer. In order to have a unique

writing we 
onsider that the last partial 
oe�
ient is greater or equal to two;

ex
ept for slope 1 = [0, 1].
Let us now explain how to 
ompute the pattern asso
iated with a rational

slope z in the �rst o
tant.

Consider E a mapping from the set of positive rational number smaller

than one onto the Freeman-move's words. As we only 
onsider slopes in the

�rst o
tant, we only 
onsider horizontal steps (denoted by 0) and verti
al steps

(denoted by 1).
Let us de�ne this mapping as: E(z0) = 0, E(z1) = 0u11 and others values

are expressed re
ursively:

E(z2i+1) = E(z2i)
u2i+1E(z2i−1) (5)

E(z2i) = E(z2i−2)E(z2i−1)
u2i

(6)

It has been shown that this mapping 
onstru
ts the pattern (a, b) for any

rationnal slope z = a
b
. Fig. 3 exempli�es the 
onstru
tion of an odd pattern

using the mapping E.

The Minkowski L1
length of E(zk) equals pk + qk and 
an be expressed

re
ursively using Eq. (2) and (3).

Eq. (4) spe
i�es that even 
onvergents are approximations by lower values

and odd 
onvergents are approximations by upper values. It indeed explains

that an even pattern zeven and an odd pattern zodd are 
ombined to form a

more 
omplex pattern z, the slopes verify zeven < z < zodd.

There exists other equivalent relations for 
omputing numerators and de-

nominators (see [25℄ Chap. 4 and [16℄ Chap. 9) and the splitting formula 
an

be used to obtain patterns. However the splitting formula uses two k-th 
on-

vergents with the same depth, whereas we here use two k-th 
onvergents of


onse
utive depths.

For 
onvenien
e reasons we say that a slope has an even (resp. odd) depth

when its development in 
ontinued fra
tions has an even (resp. odd) depth.
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p2

Y

X

L1

L2

U2

U1

O

z3 = [0, 2, 3, 3]

E(z3)

E(z2) E(z2) E(z2) E(z1)

p1

q1

q2

Figure 3: A digital straight segment of 
hara
teristi
s (10, 23, 0) with an odd

depth slope, taken between origin and its se
ond lower leaning point.

3 Convex digital polygons and number of maxi-

mal digital straight segments

3.1 Introdu
tion

We now study digital straight segments and patterns lying on the digital 
ontour

of Convex Digital Polygons (CDP). More pre
isely, we establish some relations

between maximal segments and digital edges of 
onvex shape digitizations.

From 
hara
terizations of dis
rete 
onvexity [15℄, we obtain the following

property.

Proposition 3.1. Ea
h digital edge of a CDP is either a pattern or a su

ession

of the same pattern whose slope is the one of the edge. In other words, both

verti
es are upper leaning points of the digital edge.

Proof. Points between two su

essive verti
es on the digital 
urve are always

below the real segment linking the two verti
es. From [15℄, [ViVi+1] is a DSS.

Thus the real line linking Vi and Vi+1 is the upper leaning line of the DSS and

both verti
es are upper leaning points. �

Maximal segments are DSS: between any two upper (resp. lower) leaning

points lays at least a lower (resp. upper) leaning point. The slope of a maximal

segment is then de�ned by two 
onse
utive upper and/or lower leaning points.

Digital edges are patterns and their verti
es are upper leaning points (from

Proposition 3.1). Thus, verti
es may be upper leaning points but never lower

leaning points of maximal segments. Sin
e a digital edge is a DSS, we get:

Lemma 3.2. A maximal segment 
annot be stri
tly 
ontained into a digital

edge.

Thus, a digital edge is either a maximal segment or a stri
t subset of a

maximal DSS. Sin
e there is one edge asso
iated to one digital edge, the only

spe
i�
 
ase is when a digital edge is stri
tly in
luded in a maximal segment.

As we have seen, the verti
es of a digital edge are upper leaning points of the

9



digital edge but not ne
essarily upper leaning points of the maximal segment


ontaining the digital edge. To see what happens on the boundary of the CDP,

we noti
e that a maximal segment is de�ned by at least three leaning points.

They are two 
ases: ULU 
orresponding to two upper and one lower leaning

points and LUL 
orresponding to two lower and one upper leaning points. If

a maximal segment 
ontains stri
tly more than three leaning points, it has at

least two upper leaning points and we say that it veri�es the ULU 
ase also. In

the sequel, we study those two 
ases by relating them respe
tively to edges and

verti
es of the CDP. Thanks to these asso
iations, we 
ould des
ribe in Theorem

3.11 an upper bound on the number of maximal DSS.

3.2 Case study

an edge−supported segment

a supporting edge

Figure 4: Supporting edge and edge-supported segments of a CDP

We �rst study the ULU 
ase. Doerksen and Debled [22℄ proved that prin
ipal

upper leaning points of maximal segment are verti
es of the CDP. Hen
e, any

maximal segment in the ULU 
ase de�nes a digital edge whi
h links these upper

leaning points. This motivates the following de�nitions (see Fig. 4) and lemma.

De�nition 3.3. We 
all supporting edge, a digital edge whose two verti
es

de�ne leftmost and rightmost upper leaning points of some maximal segment.

De�nition 3.4. We 
all edge-supported segment, a maximal segment de�ned

by a supporting edge.

Lemma 3.5. A supporting edge de�nes only one maximal segment: it is the

only one 
ontaining the edge and it has the same slope. If a maximal segment


ontains two or more upper leaning points then there is a supporting edge linking

its leftmost and rightmost upper leaning points with the same slope. If a maximal

segment 
ontains three or more lower leaning points then it 
ontains a supporting

edge with the same slope.

Hen
e, we 
an asso
iate to any maximal segment in the ULU 
ase its 
or-

responding digital edge. Thus, there is a natural 
orresponden
e between ULU

maximal segments and a subset of the edges of the CDP.

We then study the LUL 
ase. The only upper leaning point of su
h a maximal

segment is 
learly a vertex of the CDP. We thus introdu
e the following de�nition

(see Fig. 5).

De�nition 3.6. We 
all vertex-supported segment, a maximal segment whose

slope is only de�ned by its two 
onse
utive lower leaning points. Su
h a segment

has only one upper leaning point.

10



a vertex−supported segment

Figure 5: Vertex supported segments of a CDP

It is natural to asso
iate the LUL maximal segment to the vertex U of the

CDP. To get bounds on the number of LUL maximal segments, we must study

further the relation between verti
es of the CDP and LUL segments. This is

done in next subse
tion.

3.3 Upper bound for the number of maximal segments

In Propositions 3.9 and 3.10, we prove that there exists at most one vertex-

supported segment of odd and even depth at any vertex of the CDP. But before

stating them, we give �rst two te
hni
al lemmas.

Lemma 3.7. Consider a vertex-supported segment, with L1 and L2 its lower

leaning points, leftmost and rightmost respe
tively. Let us 
all U its only upper

leaning point. If I and E stand as the �rst and last point of this maximal

segment. We have:

F (I) = F (L1) = E and B(E) = B(L2) = I

Proof. Sin
e this maximal segment is vertex-supported, its slope is de�ned

by [L1L2], hen
e any subset of this maximal segment 
ontaining [L1L2] has

the same slope. Therefore [IE] and [L1E] have the same slope, thus F (I) =
F (L1) = E. Similarly [L1E] and [IE] have the same slope, entailing B(E) =
B(L2) = I. �

Lemma 3.8. Two distin
t vertex-supported segments MS = [IL1L2E] and

MS′ = [I ′L′
1L

′
2E

′] 
annot have their lower leaning points ordered as follow:

L′
1 ≤ L1 < L2 ≤ L′

2

Proof. If pre
eding equality holds between MS and MS′
, the extremities of MS


an only be set in four positions 
onsidering L′
1 and L′

2. We show that none of

them 
an be a
hieved:

MS 
annot be stri
tly 
ontained into [L′
1L

′
2] sin
e [L′

1L
′
2] is a DSS.

If MS extends over [L′
1L

′
2] then pre
eding inequality does not hold, be
ause

MS and MS′
would be identi
al, whi
h raise a 
ontradi
tion.

Consider now that MS has its �rst point before L′
1 and its last point before

L′
2, we get a 
ontradi
tion be
ause F (L1) = E (Lemma 3.7) and F (L1) ≥ L′

2

sin
e [L1L
′
2] is a DSS.

Similarly if the �rst point of MS is after L′
1 and its last point after L′

2,

B(L2) = I (Lemma 3.7) and B(L2) ≤ L′
1 sin
e [L′

1L2] is a DSS. This 
on
ludes

the proof. �
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We now relate the number of vertex-supported segments to the number of

digital edges.

Proposition 3.9. On a vertex of the CDP there is at most one vertex-supported

segment with an even depth.

Proof. The proof is made by 
ontradi
tion. Consider there exists two vertex-

supported segments of even depth. Say MS of depth z2i with L1, L2 its lower

leaning points (leftmost and rightmost) and U2 as upper leaning point; MS′
of

depth z′2j with L′
1, L′

2 its lower leaning points and U2 as upper leaning point

(they share the same vertex as upper leaning point). If L1 = L′
1 , then MS and

MS′

oin
ide sin
e they are maximal segments (using Lemma 3.7). Consider

now that L′
1 < L1, that is the leftmost lower leaning point of MS′

lays before the

one of MS on the 
onvex dis
rete 
urve. In this 
ase it is 
lear that [L1U2] ⊂
[L′

1U2]. Thus [L′
1U2] = l′[L1U2] with l′ some left stri
t fa
tor of [L′

1U2]. From

Proposition B.2 [L1U2] has E(z2i−1)
u2i−1

as a right fa
tor. We 
an now write

[L′
1U2] = l′lE(z2i−1)

u2i−1
with l some left stri
t fa
tor of [L1U2], and [L′

1U2]

ontains the pattern E(z2i−1). Sin
e [L′

1U2] is a right subpart of the pattern

E(z′2j), E(z2i−1) is a right stri
t fa
tor of E(z′2j).
If z2i = [0, u1, . . . , u2i−1, u2i], from Proposition B.3 the slope z′2j has z2i−2 as

a 2i − 2 
onvergent, and u′
2i−1 ≥ u2i−1. Thus z′2j = [0, u1, . . .

. . . , u2i−2, u
′
2i−1, u

′
2i, . . . , u

′
2j]. From Proposition B.2 (swit
hing U1L1 with U2L2

in the proposition) we have L1(U2L2) = q2i−1 + p2i−1 = u2i−1(q2i−2 + p2i−2) +
q2i−3 + p2i−3 and L1(U2L

′
2
) = q′2j−1 + p′2j−1.

From the writing of L1(U2L
′
2
) and with u′

2i−1 ≥ u2i−1, we have L1(U2L
′
2
) ≥

L1(U2L2). As a result we have : L′
1 < L1 < U2 < L2 ≤ L′

2. Using Lemma 3.8

we get a 
ontradi
tion. �

Similarly, we obtain the same result for a segment with an odd depth.

Proposition 3.10. On a vertex of the CDP there is at most one vertex-supported

segment with an odd depth.

We have seen that any edge-supported segment is asso
iated to one edge

of the CDP and that to ea
h vertex of the CDP at most two vertex-supported

segments 
an be asso
iated. This leads to the following upper bound.

Theorem 3.11. If Γ is a CDP, its number of maximal segments is upper

bounded by three times its number of edges.

Proof. Let us 
onsider the following numbers of maximal segments:

• nULU are the edge-supported segments whose slope is given by their upper

leaning point. Ea
h of them is linked to a supporting edge.

• neven
LUL are the vertex-supported segments with an even depth.

• nodd
LUL are the vertex-supported segments with an odd depth.

It is 
lear that nMS(Γ) = nULU + nodd
LUL + neven

LUL. Moreover we have:

• nULU ≤ ne(Γ).

• neven
LUL ≤ ne(Γ) from Proposition 3.9.

• nodd
LUL ≤ ne(Γ) from Proposition 3.10.

Consequently: nMS ≤ 3ne(Γ) �.
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3.4 Absorption of digital edges by maximal segments and

lower bound

In the previous subse
tion, we provide an upper bound on the number of max-

imal segments. The lower bound however depends on the resolution m of the

digitization pro
ess and will be studied later on. In this subse
tion, we study

the absorption phenomena of digital edges by maximal segments.

We re
all that ea
h digital edge of the CDP is a pattern. We now try to �nd

how many edges 
an be absorbed by a single maximal segment. This is done in

three steps. We begin with Lemma 3.12 whi
h examines under whi
h 
onditions

a pattern 
ould be extended by su

essive patterns so that the resulting set is

not a pattern but still a digital straight segment. We then determine how many

edges (i.e. patterns) 
an �t into a maximal segment, �rst into edge-supported

segments and se
ondly into vertex-supported segments (Theorem 3.13). These

results, 
ombined together, give the lower bound for the number of maximal

segments wrt the number of edges, whi
h is shown to be log-dependent on the

maximal slope depth of digital edges.

Lemma 3.12. We 
all Pn a pattern of depth n whose Freeman 
ode is E(zn).
One 
an build stri
t right and left fa
tors (
alled respe
tively R and L) of Pn

su
h that:

(i) [RPn], [PnL] and [RPnL] are DSS of slope zn,

(ii) R and L are patterns (or su

essions of the same pattern) ,

(iii) RPn, PnL and RPnL are not patterns,

(iv) the slope of R is greater than that of Pn and the slope of Pn is greater than

that of L,

(v) maximal depth of slope of R and L depends on parity of n:
Depth of Pn maximal depth of R maximal depth of L

2i + 1 2i + 1 2i
2i 2i − 1 2i

their Freeman moves are su
h that:

Freeman moves of Pn Freeman moves of R Freeman moves of L

E(z2i+1) E(z2i)
u2i+1−rE(z2i−1) E(z2i)

u2i+1−l

E(z2i) E(z2i−1)
u2i−r E(z2i−2)E(z2i−1)

u2i−l

(vi) Depth of fa
tors obtained by substra
ting R or L from Pn depends on par-

ity of n:
Depth of Pn depth of Pn r R depth of Pn r L

2i + 1 2i 2i + 1
2i 2i 2i − 1

their Freeman moves are su
h that:

Freeman moves of Pn Freeman moves of Pn r R Freeman moves of Pn r L
E(z2i+1) E(z2i)

r E(z2i)
lE(z2i−1)

E(z2i) E(z2i−2)E(z2i−1)
r E(z2i−1)

l

Proof. Sin
e R and L are stri
t fa
tors of Pn, their Freeman moves are 
om-

patible with those of E(zn), giving same slope when R,Pn and L are put together.

Thus [RPn], [PnL] and [RPnL] are DSS of slope zn. This 
on
ludes (i). From
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digital straightness we 
learly have digital 
onvexity (see [15℄). Upper leaning

points of this DSS are lo
ated at extremities of Pn.

We simply 
hoose among stri
t fa
tors R and L those that are patterns so

that they �t des
riptions given in Eq. (5) and Eq. (6). Whi
h brings (ii).
We may now des
ribe them given the parity of n. Consider the 
ase where

n is odd (say n = 2i + 1), from Eq. (5) we get: R = E(z2i)
u2i+1−rE(z2i−1) and

L = E(z2i)
u2i+1−l

with r > 0 and l > 0. If R and L are longer patterns, they

are not anymore stri
t fa
tors of P2i+1. We see that R is a pattern of depth

2i + 1 and that L is a su

ession of the pattern E(z2i), with a depth of 2i. This
brings (v)Â in the odd 
ase.

The slope of R equals z′2i+1 = [0, u1, . . . , u2i, u2i+1−r] =
p′

2i+1

q′

2i+1

. From Eq. (2)

and Eq. (3) we get that

p2i+1

q2i+1
=

p′

2i+1+rp2i

q′

2i+1
+rq2i

. The sign of z′2i+1 − z2i+1 is that of

p′2i+1q2i − q′2i+1p2i, and is positive (see Eq. (1)). Thus the slope of R is greater

than that of P2i+1. Same reasoning applied to z2i+1 − z2i brings that the slope

of P2i+1 is greater than that of L. Thus (iv) holds in the odd 
ase.

Consider now that n is even (say n = 2i), from Eq. (6) we get: R =
E(z2i−1)

u2i−r
and L = E(z2i−2)E(z2i−1)

u2i−l
. If R and L are longer patterns,

they are not anymore stri
t fa
tors of P2i. Clearly, R has a depth of 2i− 1 and

that of L equals 2i. This brings (v) in the even 
ase.

The slope of L equals z′2i = [0, u1, . . . , u2i−1, u2i− l] =
p′

2i

q′

2i

. From Eq. (2) and

Eq. (3) we get that

p2i

q2i
=

p′

2i+lp2i−1

q′

2i
+lq2i−1

. The sign of z2i − z′2i is that of q′2ip2i−1 −
p′2iq2i−1, and is positive (see Eq. (1)). Thus the slope of Pn is greater than that

of L. Same reasoning applied to z2i−1 − z2i brings that the slope of R is greater

than that of Pn. Thus (iv) holds in the even 
ase.

From Eq. (6) and Eq. (5) and pre
eding results it is 
lear that RPn, PnL
and RPnL 
annot be des
ribed as patterns whi
h brings (iii).

If n is odd then the fa
tor obtained by substra
ting R from P2i+1 equals

E(z2i)
r
and substra
ting L from P2i+1 gives E(z2i)

lE(z2i−1). In the even 
ase

the fa
tor obtained by substra
ting R from P2i equals E(z2i−2)E(z2i−1)
r
and

substra
ting L from P2i gives E(z2i−1)
l
. Thus (vi) holds. �

Theorem 3.13 shows that the maximal number of digital edges that may be


ontained in a maximal segment linearly depends on the depth of its slope.

Theorem 3.13. We have the following:

1. Let E be a supporting edge whose slope has a depth n, n ≥ 2, then the edge-

supported maximal segment asso
iated with E in
ludes at most n other

edges on ea
h side of E.

2. Any vertex-supported maximal segment whose slope has a depth n in
ludes

at most 2n edges.

Proof. We only provide the proof of the �rst result and refer to [9℄ for a similar

proof of the se
ond result.

We 
onstru
t 2n digital edges around E:

• (Ri)1≤i≤n at left of E,

• (Li)1≤i≤n at right of E.
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These edges are su
h that [Rn . . . Ri . . . R1EL1 . . . Lj . . . Ln] is a DSS of slope

zn = a/b and has no other upper leaning points but those lo
ated on E. E
may 
ontain several times the pattern E(zn). It is 
lear that Rn . . . Ri . . . R1

(resp. L1 . . . Lj . . . Ln) has to be a right (resp. left) stri
t fa
tor of E(zn) to be


ompatible with it. Moreover Ri is a right stri
t fa
tor of E(zn) r Ri−1 . . . R1

and Li is a left stri
t fa
tor of E(zn) r L1 . . . Li−1. From Proposition 3.1 if

(Ri)1≤i≤n and (Li)1≤i≤n are patterns or su

essions of the same pattern, then

they are digital edges. From Eq. (5) and Eq. (6) two su

essive digital edges

with same depth (say n) 
annot form a right or left stri
t fa
tor of a pattern

with same depth. Thus depths of (Ri)1≤i≤n and (Li)1≤i≤n are de
reasing when i
in
reases. Moreover to ful�ll 
onvexity properties, slopes of edges are de
reasing

from Rn to Ln.

We now build (Ri)1≤i≤n when n is odd (say n = 2i+1). From Lemma 3.12 (v),
R1 has a depth that equals 2i + 1 and R2 is a right stri
t fa
tor of E(zn) r R1

whi
h is by Lemma 3.12 (vi) a pattern of depth 2i. Applying again Lemma 3.12(v)
brings R2 with a depth of 2i−1. Sin
e 
omplexities are de
reasing, we only take

into a

ount the right part of E(zn) r R1R2 whi
h has a depth equaling at most

2i − 1, that is E(z2i−1)
r2
. We 
an now build R3 and R4 using Lemma 3.12 on

E(z2i−1). Applying the same reasoning re
ursively brings other edges as shown

on Table 1. Lemma 3.12( iv) also implies de
reasing slopes, that is digital 
on-

vexity.

Constru
tions for the three other 
ases are given in Tables 1 and 2 and

follow the same reasoning. To satisfy full de
omposition ea
h (uk)1≤n has to

be equal or greater than 2. If this 
ondition is not meet for some k, than steps

asso
iated with it (e.g. any fa
tors 
ontaining uk − rj or uk − lj as powers of

some pattern) are skipped. This 
on
ludes the proof. �

The following 
orollary is based on the proof of Theorem 3.13 by taking the

worst-
ase 
onstru
tion. A similar result related to linear integer programming

is in [24℄. It may also be obtained by viewing standard lines as interse
tion of

two knapsa
k polytopes [14℄.

Corollary 3.14. The shortest pattern of a supporting edge for whi
h its maxi-

mal segment may 
ontain 2n + 1 digital edge is zn = [0, 2, . . . , 2]. If the DCP is

en
losed in a m × m grid, then the maximal number n of digital edges in
luded

in one maximal segment is upper bounded as:

n ≤ log (2
√

2m)

log (1 +
√

2)
− 1

Proof. From Theorem 3.13 we know that maximal segments may 
ontain at

most 2n + 1 digital edges. We further know that these ones are edge-supported

segments. We now look for the shortest pattern. To ful�ll all 
onditions, if

zn = [0, u1, . . . , un] is the slope of the pattern then ea
h ui, 1 ≤ i ≤ n, has to

be greater or equal than two. The length of ea
h pattern zn (say L1(E(zn)))

an be 
omputed using Eq (2) and (3) and 
an be expressed as a fun
tional of

u1, . . . , un. A 
loser look these equations brings that:

∂L1(E(zn))
∂ui

≥ 0 for ea
h

1 ≤ i ≤ n. As a result, the shortest pattern that mat
hes Theorem 3.13 is su
h

that: 1 ≤ i ≤ n ui = 2 and u0 = 0.
Asymptoti
ally, we get the number L = [0, 2, . . . , 2, . . .], whi
h is a quadrati


number equal to −1 +
√

2. Its re
ursive 
hara
terization is Un = 2Un−1 + Un−2
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Table 1: Constru
tions of (Ri)1≤i≤n and (Li)1≤i≤n given n odd .

Constru
tions of (Ri)1≤i≤n when n = 2i + 1
Fa
tor Freeman moves Depth

R1 E(z2i)
u2i+1−r1E(z2i−1) 2i + 1

R2 E(z2i−1)
u2i−r2 2i − 1

R3 E(z2i−2)
u2i−1−r3E(z2i−3) 2i − 1

R4 E(z2i−3)
u2i−2−r4 2i − 3

.

.

.

.

.

.

.

.

.

R2j E(z2i+1−2j)
u2i+2−2j−r2j 2i + 1 − 2j

R2j+1 E(z2i−2j)
u2i+1−2j−r2j+1E(z2i−1−2j) 2i + 1 − 2j

.

.

.

.

.

.

.

.

.

R2i+1 0u1−r2i+11 1

Constru
tions of (Li)1≤i≤n when n = 2i + 1
Fa
tor Freeman moves Depth

L1 E(z2i)
u2i+1−l1 2i

L2 E(z2i−2)E(z2i−1)
u2i−l2 2i

L3 E(z2i−2)
u2i−1−l3 2i − 2

L4 E(z2i−4)E(z2i−3)
u2i−2−l4 2i − 2

.

.

.

.

.

.

.

.

.

L2j E(z2i−2j)E(z2i+1−2j)
u2i+2−2j−l2j 2i + 2 − 2j

L2j+1 E(z2i−2j)
u2i+1−2j−l2j+1 2i − 2j

.

.

.

.

.

.

.

.

.

L2i+1 0u1−l2i+1 0

with U0 = 0 and U1 = 1. We also have zn = [0, 2, . . . , 2
︸ ︷︷ ︸

n times

] = Un

Un+1
.

Solving it leads to Un =
√

2
4

(
(1 +

√
2)n − (1 −

√
2)n

)
. Hen
e asymptoti
ally,

Un ≈
√

2
4 (1 +

√
2)n

and limn→∞
Un

Un+1
= L.

Re
all that zn is the n-th 
onvergent of L. We have L1(E(zn)) = Un +Un+1.

To �t into an m × m grid, zn is su
h that Un+1 ≤ m. We thus obtain that

n ≤ log(2
√

2m)

log(1+
√

2)
− 1. �

We give now the upper and lower bounds for the number of maximal seg-

ments on �nite CDP.

Theorem 3.15. The number of maximal segments on a CDP en
losed into a

m × m grid is bounded by:

ne(Γ)

K1 log m + K2
≤ nMS(Γ) ≤ 3ne(Γ)

with K1 = 2

log (1+
√

2)
and K2 = log 8(

√
2−1)

log (1+
√

2)
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Table 2: Constru
tions of (Ri)1≤i≤n and (Li)1≤i≤n given n even.

Constru
tions of (Ri)1≤i≤n when n = 2i

Fa
tor Freeman moves Depth

R1 E(z2i−1)
u2i−r1 2i − 1

R2 E(z2i−2)
u2i−1−r2E(z2i−3) 2i − 1

R3 E(z2i−3)
u2i−2−r3 2i − 3

R4 E(z2i−4)
u2i−3−r4E(z2i−5) 2i − 3

.

.

.

.

.

.

.

.

.

R2j E(z2i−2j)
u2i+1−2j−r2j E(z2i−1−2j) 2i + 1 − 2j

R2j+1 E(z2i−1−2j)
u2i−2j−r2j+1 2i − 1 − 2j

.

.

.

.

.

.

.

.

.

R2i 0u1−r2i1 1

Constru
tions of (Li)1≤i≤n when n = 2i
Fa
tor Freeman moves Depth

L1 E(z2i−2)E(z2i−1)
u2i−l1 2i

L2 E(z2i−2)
u2i−1−l2 2i − 2

L3 E(z2i−4)E(z2i−3)
u2i−2−l3 2i − 2

L4 E(z2i−4)
u2i−3−l4 2i − 4

.

.

.

.

.

.

.

.

.

L2j E(z2i−2j)
u2i+1−2j−l2j 2i − 2j

L2j+1 E(z2i−2−2j)E(z2i−1−2j)
u2i−2j−l2j+1 2i − 2j

.

.

.

.

.

.

.

.

.

L2i 0u1−l2i 0

Proof. We know that maximal segments 
over the entire dis
rete 
urve and

that a maximal segment of depth n 
ontains at most 2n + 1 digital edges. Thus

there 
annot be less maximal segments than ne(Γ)/(2n+1). Pre
eding 
orollary
yields:

n ≤ log(2
√

2m)

log(1 +
√

2)
− 1

Whi
h leads to the inequality:

ne(Γ) log(1 +
√

2)

2 logm + log 8(
√

2 − 1)
≤ nMS(Γ) ≤ ne(Γ)

2n + 1

Theorem 3.11 brings the upper bound, putting both inequalities together bring:

ne(Γ)

K1 log m + K2
≤ nMS(Γ) ≤ 3ne(Γ)

4 Length of maximal digital straight segments

We present in this part how the length of maximal segments and of digital edges

are tightly intertwined. We 
all L1
the length estimator based on the Minkowski
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distan
e. For a ve
tor u we write L1(u) and for a 4-
onne
ted dis
rete path

[AB] we write L1([AB]). Note that if [AB] is a DSS then L1([AB]) = L1(AB).
We begin our study by 
omparing the length of edge-supported with the

length of its asso
iated supporting edge (Proposition 4.1). We similarly study

vertex-supported segments (Proposition 4.2).

Proposition 4.1. Let [VkVk+1] be a supporting edge of slope

a
b
made of f pat-

terns (a, b) and let MS be the maximal segment asso
iated with it (Lemma 3.5).

Their lengths are linked by the inequalities:

L1(VkVk+1) ≤ L1(MS) ≤ f + 2

f
L1(VkVk+1) − 2

1

3
L1(MS) < L1(VkVk+1) ≤ L1(MS) < 3L1(VkVk+1)

Proof. Verti
es Vk and Vk+1 are leftmost and rightmost upper leaning points

of MS. The points Vk − (b, a), Vk+1 + (b, a) while 
learly upper leaning points

of the standard line going through [VkVk+1] 
annot belong to the CDP. Hen
e

MS 
annot extend further of its supporting edge of more than |a|+ |b|−1 points

on both sides. Consequently L1(MS) ≤ L1(VkVk+1) + 2(|a| + |b| − 1). Using

L1(VkVk+1) = f(|a|+|b|) brings: L1(VkVk+1) ≤ L1(MS)) ≤ f+2
f

L1(VkVk+1)−2.

Worst 
ases bring L1(VkVk+1) ≤ L1(MS) < 3L1(VkVk+1) �

Proposition 4.2. Let MS be a vertex-supported segment and Vk its upper lean-

ing point whi
h is a vertex of the CDP. The length of this maximal segment is

upper bounded by:

L1(MS) ≤ 4
(
L1(Vk−1Vk) + L1(VkVk+1)

)

Proof. We 
all L1, L2 the leftmost and rightmost lower leaning points and

U2 ≡ Vk the upper leaning point (see Fig. 3). Suppose that MS has a slope with

an odd depth (say 2i + 1).
Proposition B.1 implies L1(L1U2) = q2i+p2i. There is 
learly a right part of

[L1U2] (i.e. [L1Vk]) that is 
ontained in [Vk−1Vk] and tou
hes Vk. The pattern

E(z2i−1)
u2i

is a right fa
tor of [L1U2] (Proposition B.1 again). It is indeed a

right fa
tor of [Vk−1Vk] too, sin
e it 
annot extends further than Vk−1 to the

left without de�ning a longer digital edge. We get [Vk−1Vk] ⊇ E(z2i−1)
u2i

and

immediately L1(Vk−1Vk) ≥ u2iL1(E(z2i−1)) = u2i(q2i−1 + p2i−1).
From Eq. (2) and Eq. (3), we have: q2i + p2i = u2i(q2i−1 + p2i−1) + q2i−2 +

p2i−2 and q2i−2 + p2i−2 ≤ q2i−1 + p2i−1. We obtain immediately L1(L1U2) =
q2i + p2i ≤ (u2i + 1)(q2i−1 + p2i−1). By 
omparing this length to the length of

the digital edge [Vk−1Vk], we get:

L1(L1U2) ≤ u2i + 1

u2i

L1(Vk−1Vk)

Proposition B.1 and similar arguments on [VkVk+1] bring :

L1(U2L2) ≤ u2i+1

u2i+1 − 1
L1(Vk−1Vk)

Worst 
ases are then L1(L1U2) ≤ 2L1(Vk−1Vk) and L1(U2L2) ≤ 2L1(VkVk+1).
The 
ase where MS has a slope with an even depth (say 2i) uses Proposition B.2
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and for the same reasons as above leads to:

L1(L1U2) ≤ u2i

u2i − 1
L1(Vk−1Vk) ≤ 2L1(Vk−1Vk)

L1(U2L2) ≤ u2i−1 + 1

u2i−1
L1(VkVk+1) ≤ 2L1(VkVk+1)

Sin
e MS has only one upper leaning point, it 
annot be extended further

than L1(U2L2) on the left and L1(L1U2) on the right (Lemma 3.5). Thus, we

get:

L1(MS) ≤ 4(L1(Vk−1Vk) + L1(VkVk+1)) �

We are now able to 
ompare the total length of maximal segments with the

perimeter of the DCP.

Proposition 4.3. Let Γ be a CDP, nMS(Γ) the number of maximal segment

on Γ, then :

∑

i∈nMS(Γ)

L1(MSi) ≤ 19Per(Γ)

Proof. With the notations of Theorem 3.11 and with slight abuse of notations,

we de
ompose the total length as:

∑

nMS

L1(MSi) =
∑

nULU

L1(MSULU ) +
∑

nodd
LUL

L1(MSodd
LUL) +

∑

neven
LUL

L1(MSeven
LUL)

Let us now fo
us on

∑

nULU
L1(MSULU ), using Proposition 4.1 we get :

∑

nULU

L1(MSULU ) ≤ 3
∑

nULU

L1([VkVk+1])

Using nULU ≤ ne(Γ) and the fa
t that ea
h digital edge appears at most on
e

lead us to

∑

nULU
L1([VkVk+1]) ≤ Per(Γ) entailing that:

∑

nULU

L1(MSULU ) ≤ 3Per(Γ)

Considering

∑

nodd
LUL

L1(MSodd
LUL) and

∑

neven
LUL

L1(MSeven
LUL) with Proposition 4.2

we have:

∑

nodd
LUL

L1(MSodd
LUL) ≤ 4

∑

nodd
LUL

(
L1([Vk−1Vk]) + L1([VkVk+1])

)

∑

neven
LUL

L1(MSeven
LUL) ≤ 4

∑

neven
LUL

(
L1([Vk−1Vk]) + L1([VkVk+1])

)

Considering that nodd
LUL ≤ ne(Γ) (from Proposition 3.10) and neven

LUL ≤ ne(Γ)
(from Proposition 3.9) and that ea
h digital edge appears at most on
e, we 
learly

get :

∑

nodd
LUL

L1(MSodd
LUL) ≤ 4




∑

nodd
LUL

L1([Vk−1Vk]) +
∑

nodd
LUL

L1([VkVk+1])



 ≤ 8Per(Γ)
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∑

neven
LUL

L1(MSeven
LUL) ≤ 4




∑

neven
LUL

L1([Vk−1Vk]) +
∑

neven
LUL

L1([VkVk+1])



 ≤ 8Per(Γ)

Eventually putting everything together brings:

∑

nMS

L1(MSi) ≤ 19Per(Γ) �

We are now able to bound the average length of maximal segments wrt the

number of edges on a CDP and the grid in whi
h it is en
losed.

Theorem 4.4. Let Γ be a CDP en
losed in a m × m grid, we have :

Per(Γ)

3ne(Γ)
≤

∑

nMS
L1(MSi)

nMS(Γ)
≤ 19Per(Γ)(K1 log m + K2)

ne(Γ)

with K1 and K2 de�ned as in Theorem 3.15.

Proof. From Theorem 3.15 we get :

1

3ne(Γ)
≤ 1

nMS(Γ)
≤ K1 log m + K2

ne(Γ)

And from Proposition 4.3:

∑

nMS

L1(MSi) ≤ 19Per(Γ)

Sin
e maximal segments 
over the entire dis
rete 
urve we have:

Per(Γ) ≤
∑

nMS

L1(MSi)

It is now easy to see that:

Per(Γ)

3ne(Γ)
≤

∑

nMS
L1(MSi)

nMS(Γ)
≤ 19Per(Γ)(K1 log m + K2)

ne(Γ)

We have thus shown that, on 
onvex digital polygons, the average size of

maximal segments is essentially proportional to the average size of the digital

edges. Maximal segments may be slightly longer than digital edges on average

by a logarithmi
 fa
tor of the size of the grid 
ontaining the digital shape.

5 Asymptoti
 
onvergen
e

We may now turn to a dire
t appli
ation of the previous results of the paper by

studying the asymptoti
 properties of dis
rete geometri
 estimators on digitized

shapes. We therefore 
onsider a plane 
onvex body S whi
h is 
ontained in the

square [0, 1]×[0, 1] (w.l.o.g.). Furthermore, we assume that its boundary γ = ∂S
is C3

with everywhere stri
tly positive 
urvature. This assumption is not very

restri
tive sin
e people are mostly interested in regular shapes. Furthermore,

the results of this se
tion remains valid if the shape 
an be divided into a �nite

number of 
onvex and 
on
ave parts; ea
h one is then treated separately. The

digitization of S with step 1/m de�nes a digital 
onvex polygon Γ(m) ins
ribed
in a m × m grid. We �rst examine the asymptoti
 behavior of the maximal

segments of Γ(m), both theoreti
ally and experimentally. We then study the

asymptoti
 
onvergen
e of a dis
rete 
urvature estimator.
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Figure 6: For both 
urves, the digitized shape is a disk of radius 1 and the

abs
issa is the digitization resolution. Left: plot in log-spa
e of the L1
-size

of maximal segments. Right: plot of the mean and standard deviation of the

absolute error of 
urvature estimation, |κ̂ − 1| (expe
ted 
urvature is 1).

5.1 Asymptoti
 behavior of maximal segments

The next theorem summarizes the asymptoti
 average size of maximal segments

with respe
t to the grid size m.

Theorem 5.1. The average L1
-length L(Γ(m)) of the maximal segments of

Γ(m) has the following asymptoti
 bounds:

Θ(m
1
3 ) ≤ L(Γ(m)) ≤ Θ(m

1
3 log m). (7)

Proof. Theorem 4.4 gives for the DCP Γ(m) the following inequality:

Per(Γ)

3ne(Γ)
≤

∑

nMS
L1(MSi)

nMS

≤ 19Per(Γ)(K1 log m + K2)

ne(Γ)

where K1 and K2 are two 
onstants.

Sin
e Γ(m) is 
onvex and in
luded in the subset m× m of the digital plane,

its perimeter Per(Γ(m)) is upper bounded by 4m. Furthermore, for a su�
iently

large m, this perimeter is lower bounded by p(Γ)m, where p(Γ) is twi
e the sum

of the width and height of the bounding box of Γ. On the other hand, Theorem 2.7

indi
ates that its number of edges ne(Γ(m)) is lower bounded by c1(S)m
2
3
and

upper bounded by c2(S)m
2
3
. Putting everything together gives:

p(Γ)m

3c2(Γ)m
2
3

≤ L(Γ(m)) ≤ 19 × 4m × (K1 log m + K2)

c1(Γ)m
2
3

whi
h is on
e redu
ed what we wanted to show. �

Although there are points on a shape boundary around whi
h maximal seg-

ments grow as fast as O(m
1
2 ) (the 
riti
al points in [19℄), most of them do not

grow as fast.

On average, maximal segments grows as Θ(m
1
3 ), this fa
t is 
on�rmed with

experiments. Fig. 6, left, plots the size of maximal segments for a disk digitized

with in
reasing resolution.
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5.2 Asymptoti
 
onvergen
e of dis
rete geometri
 estima-

tors

A useful property that a dis
rete geometri
 estimator may have is to 
onverge

toward the geometri
 quantity of the 
ontinuous shape boundary when the dig-

itization grid gets �ner [4, 5, 17℄.

Of 
ourse, interesting dis
rete geometri
 estimator should 
onverge for a

large 
lass of 
urves. We now re
all the de�nition of a dis
rete 
urvature esti-

mator based on DSS re
ognition [4℄.

De�nition 5.2. Let P be any point on a digital 
ontour Γ in a grid of step

1
m
,

Q = B(P ) and R = F (P ) are the extremities of the longest DSS starting from

P (
alled half-tangents). Then the 
urvature estimator by 
ir
um
ir
le κ̂(P ) is

the inverse of the radius of the 
ir
le 
ir
ums
ribed to P , Q and R, res
aled by

the resolution m.

Experiments show that this estimator rather 
orre
tly estimates the 
urva-

ture of dis
rete 
ir
les on average (≈ 20% error) at low resolution. It seems

indeed better than any other 
urvature estimators proposed in the litterature.

Theorem B.4 of [4℄ demonstrates the asymptoti
 
onvergen
e of this 
urvature

estimator, subje
t to the 
onje
ture:

Conje
ture 5.3. Half-tangents on digitized boundaries grow at a rate of Θ(m
1
2 )

with the resolution m.

However, with our study of maximal segments, we 
an state that

Claim 5.4. Conje
ture 5.3 is not veri�ed for digitizations of C3
-
urves with

stri
tly positive 
urvature. We 
annot 
on
lude on the asymptoti
 
onvergen
e

of the 
urvature estimator by 
ir
um
ir
le.

Proof. It is enough to note that half-tangents, being DSS, are in
luded in max-

imal segments and may not be longer. Thus Theorem 5.1 
on
ludes. �

The asymptoti
 
onvergen
e of a 
urvature estimator is thus still an open

problem. Furthermore, pre
ise experimental evaluation of this estimator indi-


ates that it is most 
ertainly not asymptoti
ally 
onvergent, although it is on

average one of the most stable digital 
urvature estimator (see Fig. 6, right).

Former experimental evaluations of this estimator were averaging the 
urvature

estimates on all 
ontour points. The 
onvergen
e of the average of all 
urvatures

does not indu
e the 
onvergen
e of the 
urvature at one point.

6 Con
lusion

As a 
on
lusion, we have studied digital straight segments lying on 
onvex dig-

ital shapes. We have shown several results relating quantities over maximal

segments to the same quantities over digital edges. For shapes digitized at in-


reasing resolutions, their asymptoti
 behaviour has also been studied. Contrary

to what was thought before in the litterature, maximal segments are shown to

grow essentially at a rate of m
1
3
on average. These results will enable us in the

future to �nd 
onvergen
e rates for digital tangent estimators as well as de�ning

a 
onvergent digital 
urvature estimator.
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A Digitization and 4 
onne
ted 
urves

Lemma A.1. Let S be a 
onvex subset of R2
then D(S) = D(conv(D(S)))

Proof. First we prove that D(S) is always a subset of D(conv(D(S))):

D(S) ⊆ conv(D(S))

D(D(S)) ⊆ D(conv(D(S)))

D(S) ⊆ D(conv(D(S)))

We now prove that ea
h element of D(conv(D(S))) is in D(S). Let x ∈
D(conv(D(S))), then x ∈ conv(D(S)). Thus x =

∑

i λipi with

∑

i λi = 1 and

λi ≥ 0 for all i. As for all i, pi ∈ D(S), pi ∈ S. Sin
e S is a 
onvex shape,

x ∈ S. As x ∈ Z2
, x ∈ D(S). �

Lemma A.2. For a given S where S is a plane 
onvex body with C3
boundary

and positive 
urvature, there exists mS su
h that for all m ≥ mS, Dm(S) is


onne
ted.

Proof. There exists r0 su
h that S is par(r0) − regular. Thus let Dm(S) with

m ≥ 2
r0
. This entails that m · S is at least par(2) − regular.

Let us now suppose that for resolutions m larger that

2
r0
, Dm(S) may have

several 
onne
ted 
omponents. Let C1,C2 be two 
onne
ted 
omponent of Dm(S)
and let p1, p2 be digital points in ea
h 
omponent, C1 and C2 respe
tively.

Considering the 
omplement of Dm(S) in Z2
there exists points outside

Dm(S). We pi
k a point p′1 su
h that we 
an build a 4-
onne
ted path ⊑∞
from p1 to p′1 whom only point outside C1 is p′1. ⊑∞ is su
h that it is or-

dered and ea
h element has a su

essor and a prede
essor ex
epted the �rst and

last elements. Moreover this path is 
hosen su
h that there exists a point of the

boundary of m ·S whom inside os
ulating ball (of radius mr0) 
ontains one point

of ⊑∞ whi
h is not p′1. The same reasoning for C2 leads to the 4-
onne
ted path

⊑∈ and the point p′2.
As p′1 and p′2 are both on the boundary of m·S, there exists a 
ontinuous path

on the boundary of m·S from p′1 to p′2. Let V be the union of the inside os
ulating

ball of radius mr0 for ea
h point of this 
ontinuous path. Sin
e ea
h ball has a

radius larger than 2, the Gauss digitization of V is 4-
onne
ted and inside the

Gauss digitization of m · S. This entails that there exists a 4-
onne
ted digital

path between p1 and p2. As a result, Dm(S) has only one 
onne
ted 
omponent

for resolution larger that a threshold depending on the par(r)regularity of S. �

Remark The two pre
eeding lemmas entail that for large resolution, the

Gauss digitization of 
onvex shape with C3
boundary and positive 
urvature are

always well-
omposed in the sense of [12, 21℄.

B Preliminary relations involving patterns

This se
tion presents several properties related to patterns of DSS. They are

used all along the paper. We may now 
ompute ve
tor relations between leaning

points (upper and lower) inside a pattern. In the following we 
onsider a DSS

(a, b, 0) in the �rst o
tant starting at the origin and ending at its se
ond lower

leaning point (whose 
oordinate along the x-axis is positive). We de�ne a/b =
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zn = [0, u1, . . . , un] for some n. Leaning points will be 
alled U1, L1, U2 and L2

as shown in Fig. 3. By de�nition U1U2 = L1L2 = (b, a) and U1L1 = U2L2.

We re
all that the Freeman moves of [U1L1] are the same as those of [U2L2].
Furthermore Freeman moves between U1 and U2 form the pattern (a, b) and

those between L1 and L2 form the reversed pattern (a, b). Proposition B.1

and Proposition B.2 indi
ate more pre
isely where leaning points lie within a

pattern.

Proposition B.1. A pattern with an odd depth (say n = 2i + 1) is su
h that

U1L1 = (u2i+1−1)(q2i, p2i)+(q2i−1, p2i−1)+(1,−1) and L1U2 = (q2i−1, p2i+
1). Moreover the DSS [U1L1] has E(z2i)

u2i+1−1
as a left fa
tor, and the DSS

[L1U2] has E(z2i−1)
u2i

as a right fa
tor.

Proof. From Eq. (1) we have: p2i+1q2i − p2iq2i+1 = (−1)2i+1+1 = 1, whi
h

an be rewritten as: aq2i − bp2i = 1. Thus q2i and p2i are 
learly the Bézout


oe�
ients of (a, b). One 
an 
he
k that point (b+1− q2i, a− 1− p2i) is L1: its

remainder is a + b− 1 and its x-
oordinate while positive is smaller than b. We

immediately get U1L1 = (b + 1 − q2i, a − 1 − p2i).
Using Eq. (3) yields: U1L1 = ((u2i+1 − 1)q2i + q2i−1 + 1, (u2i+1 − 1)p2i +

p2i−1 − 1). From L1U2 = −U1L1 + U1U2, we further get that L1U2 =
(q2i − 1, p2i + 1). From Eq. (5) E(z2i)

u2i+1−1
is a left fa
tor of [U1U2] but

also of [U1L1]. Writing E(z2i+1) as E(z2i)
u2i+1−1E(z2i−2)E(z2i−1)

u2i+1
, and

expanding L1U2 as (u2iq2i−1 + q2i−2 − 1, u2ip2i−1 + p2i−2 + 1) with Eq. (2), we

see that E(z2i−1)
u2i

is a right fa
tor of [L1U2]. �

Proposition B.2. A pattern with an even depth (say n = 2i) is su
h that

U1L1 = (q2i−1+1, p2i−1−1) and L1U2 = (u2i−1)(q2i−1, p2i−1)+(q2i−2, p2i−2)+
(−1, 1). Moreover the DSS [U1L1] has E(z2i−2)

u2i−1
as a left fa
tor, and the

DSS [L1U2] has E(z2i−1)
u2i−1

as a right fa
tor.

The proof is similar to the proof of Proposition B.1 and may be found in [9℄.

Patterns and sub-patterns that are right or left fa
tors have their slopes 
losely

related, as shown by Proposition B.3 and Proposition B.4.

Proposition B.3. If the odd pattern E(z′2p+1) with z′2p+1 = [0, u′
1, . . . , u

′
2p+1]

is a right fa
tor of the pattern E(zk) with zk = [0, u1, . . . , uk] then:

z′2p = z2p and u′
2p+1 ≤ u2p+1

Proof. Consider two patterns E(zk) and E(z′2p+1) with zk = [0, u1, . . . , uk] and
z′2p+1 = [0, u′

1, . . . , u
′
2p+1]. From Eq (5) and (6) it is 
lear that E(zk) always

ends with an odd pattern whatever k. Consider there exists i (2i + 1 ≤ k) su
h
that E(z2i−1) ⊆ E(z′2p+1) ⊆ E(z2i+1) as shown on Fig. 7. If E(z′2p+1) equals

E(z2i+1) then from uni
ity of de
omposition in simple 
ontinued fra
tion we get

p = i and z′2p+1 = z2p+1. Whi
h 
on
ludes this 
ase. Otherwise looking at the

de
omposition of E(z2i+1) from Eq (5) and (6), there exists j, with 0 ≤ j <
u2i+1 su
h that E(z2i)

jE(z2i−1) ⊆ E(z′2p+1) ( E(z2i)
j+1E(z2i−1), whose slopes

are [0, u1, . . . , u2i, j] and [0, u1, . . . , u2i, j + 1]. Any dis
rete path P su
h that

E(z2i)
jE(z2i−1) ⊆ P ( E(z2i)

j+1E(z2i−1) analyzed by the standard DSS re
og-

nition algorithm [8℄ is re
ognized as a DSS with a slope equal to [0, u1, . . . , u2i, j].
Thus the slope of E(z′2p+1) is also [0, u1, . . . , u2i, j]. More pre
isely, being a pat-

tern, E(z′2p+1) = E([0, u1, . . . , u2i, j]), this entails z′2p+1 = [0, u1, . . . , u2i, j] and
p = i.
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45

Figure 7: The odd pattern E(z2i−1) ⊆ E(z′2p+1) ( E(z2i+1)

Consider now that there is no i su
h that: E(z2i−1) ⊆ E(z′2p+1) ⊆ E(z2i+1).
This mean that we 
annot �nd two odd sub-patterns belonging to E(zk) bounding
E(z′2p+1). As a result we have: E(zk−1) ⊆ E(z′2p+1) ⊆ E(zk) with k being even,

we have E(zk) = E(zk−2)E(zk−1)
uk

and we may 
onsider two 
ases:

• there exist j su
h that E(zk−1)
j ⊆ E(z′2p+1) ⊆ E(zk−1)

j+1
, with j + 1 ≤

uk,

• or E(zk−1)
uk ( E(z′2p+1) ⊆ E(zk)

In the �rst 
ase, it is 
lear that E(z′2p+1) is re
ognized by the standard DSS

re
ognition algorithm as a DSS of slope zk−1 sin
e it is bounded by two dis
rete

paths of slope zk−1. In this 
ase we get zk−1 = z′2p+1.

In the other 
ase, let us note that E(zk−1) ⊂ E(z′2p+1), whi
h implies that

E(zk−1) is bounded by two odd sub-patterns of E(z′2p+1). Thus using the same

reasoning as earlier-on we get z′k−2 = zk−2 and uk−1 ≤ u′
k−1. From Eq (5) and

(6), it is 
lear that every pattern begin with even pattern whatever their depth.

As a result E(zk−2) is a left fa
tor of E(z′2p+1) and E(zk). Moreover sin
e

E(zk−1)
uk ( E(z′2p+1) ⊆ E(zk) ≡ E(zk−2)E(zk−1)

uk
, E(z′2p+1) and E(zk)

begin with the same even pattern. Consequently E(zk) must be equal to E(z′2p+1).
Sin
e those patterns do not have the same parity of depth it raises a 
ontradi
tion

and this 
ase 
annot happen. This 
on
ludes the proof. �

Proposition B.4. If the even pattern E(z′2p) with z′2p = [0, u′
1, . . . , u

′
2p] is a left

fa
tor of the pattern E(zk) with zk = [0, u1, . . . , uk]. We have:

z′2p−1 = z2p−1 and u′
2p ≤ u2p

Proof. see [9℄. �
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