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Abstrat

Digital geometri estimators approah geometri quantities on digitized shapes without any knowledge of

the ontinuous shape. A lassial yet di�ult problem is to show that an estimator asymptotially onverges

toward the true geometri quantity as the resolution inreases. We examine here the possible onvergene

of a urvature estimator, whih is one of the best available at oarse resolutions. Although a onvergene

theorem for this estimator was published, it was based on a hypothesis related to asymptoti properties

of maximal Digital Straight Segments (DSS). We show here that this hypothesis is asymptotially false.

The proof involves results from arithmeti properties of digital lines, digital onvexity, ombinatoris and

ontinued frations. It exploits a result on onvex digital polygons, related to random polytopes.

1 Introdution

Estimating geometri features of shapes or urves solely on their digitization is a lassial problem in image

analysis and pattern reognition. Some of the geometri features are global: area, perimeter, moments. Others

are loal: tangents, normals, urvature. Algorithms that performs this task on digitized objets are alled

digital geometri estimators. An interesting property these estimators should have is to onverge towards the

ontinuous geometri measure as the digitization resolution inreases. However, few estimators have been

proved to be onvergent. In all works, shapes are generally supposed to have a smooth boundary (at least

twie di�erentiable) and either to be onvex or to have a �nite number of in�exion points. The shape perimeter

estimation has for instane been takled in [10℄. It proved the onvergene of a perimeter estimator based

on urve segmentation by maximal DSS. The speed of onvergene of several length estimators has also been

studied in [4℄. Klette and Zuni [9℄ survey results about the onvergene (and the speed of onvergene) of

several global geometri estimators. They show that disrete moments onverge toward ontinuous moments.

As far as we know, there is only one work that deal with the onvergene of loal geometri estimators [3℄.

The symmetri tangent estimator appears to be onvergent subjet to an hypothesis on the growth of DSS as

the resolution inreases (Hypothesis 4.4). The same hypothesis entails that a urvature estimator is onvergent:

it is based on DSS reognition and irumsribed irle omputation (see De�nition 4.3).

In this paper, we relate the number and the lengths of DSS to the number and lengths of edges of onvex hulls

of digitized shapes. Using arguments related to digital onvex polygons, we estimate the asymptoti behaviour

of both quantities. We theoretially show that the hypotheses used in [3℄ are not veri�ed. Experiments on�rm

our result. The onvergene theorem is thus not appliable to digital urves. As a onsequene, the existene of

onvergent digital urvature estimators remains an open problem. The paper � and the proof � is organized

as follows. First, we reall some standard notions of digital geometry and ombinatori representation of digital

lines, i.e. patterns. The relations between maximal segments and edges of onvex digital polygons are then

studied to get bounds on maximal segments lengths and number. Finally, the asymptoti behaviour of maximal

segments is dedued from the asymptoti behaviour of onvex digital polygons, itself linked to random polytopes

[1℄. Growth of some DSS on the urves is thus proved to be too slow to ensure the onvergene of urvature

estimation. This theoretial result is further on�rmed by experiments.



2 Maximal digital straight segments

We restrit our study to the geometry of 4-onneted digital urves. A digital objet is a set of pixels and its

boundary in R
2
is a olletion of verties and edges. The boundary forms a 4-onneted urve in the sense used

in the present paper. Our work may easily be adapted to 8-onneted urves. In the paper, all the reasoning

are made in the �rst otant, but extends naturally to the whole digital plane. The digital urve is denoted by

C. Its points (Ck) are assumed to be indexed. A set of suessive points of C ordered inreasingly from index

i to j will be onveniently denoted by Ci,j or [Ci, Cj ] when no ambiguities are raised.

2.1 Standard line, digital straight segment, maximal segments

De�nition 2.1 (Réveillès [13℄) The set of points (x, y) of the digital plane verifying µ ≤ ax− by < µ+ |a|+ |b|,
with a, b and µ integer numbers, is alled the standard line with slope a/b and shift µ.

The standard lines are the 4-onneted disrete lines. The quantity ax − by is alled the remainder of the line.

The points whose remainder is µ (resp. |a|+ |b|−1) are alled upper (resp. lower) leaning points. The prinipal

upper and lower leaning points are de�ned as those with extremal x values. Finite onneted portions of digital

lines de�ne digital straight segment. Sine we work with restrited parts of C, we always suppose that indies

are totally ordered on this part.

De�nition 2.2 A set of suessive points Ci,j of C is a digital straight segment (DSS) i� there exists a standard

line D(a, b, µ) ontaining them. The prediate �Ci,j is a DSS� is denoted by S(i, j).

The �rst index j, i ≤ j, suh that S(i, j) and ¬S(i, j + 1) is alled the front of i. The map assoiating any i
to its front is denoted by F . Symmetrially, the �rst index i suh that S(i, j) and ¬S(i− 1, j) is alled the bak

of j and the orresponding mapping is denoted by B.

Maximal segments form the longest possible DSS in the urve. They are essential when analyzing digital

urves: they provide tangent estimations [6, 12℄, they are used for polygonizing the urve into the minimum

number of segments [7℄.

De�nition 2.3 Any set of points Ci,j is alled a maximal segment i� any of the following equivalent hara-

terizations holds: (1) S(i, j) and ¬S(i, j + 1) and ¬S(i− 1, j), (2) B(j) = i and F (i) = j, (3) ∃k, i = B(k) and
j = F (B(k)), (4) ∃k′, i = B(F (k′)) and j = F (k′).

From haraterizations (3) and (4) of De�nition 2.3, any DSS Ci,j and hene any point belongs to at least

two maximal segments (possibly idential) CB(j),F (B(j)) and CB(F (i)),F (i).

2.2 Patterns and DSS

We here reall a few properties about patterns omposing DSS and their lose relations with ontinued frations.

They onstitute a powerful tool to desribe disrete lines with rational slopes [2, 8℄. Sine we are in the �rst

otant, the slopes are between 0 and 1.

De�nition 2.4 Given a standard line (a, b, µ), we all pattern of harateristis (a, b) the suession of Free-

man moves between any two onseutive upper leaning points. The Freeman moves de�ned between any two

onseutive lower leaning points is the previous word read from bak to front and is alled the reversed pattern.

A pattern (a, b) embedded anywhere in the digital plane is obviously a DSS (a, b, µ) for some µ. Sine a DSS

ontains at least either two upper or two lower leaning points, a DSS (a, b, µ) ontains at least one pattern or

one reversed pattern of harateristis (a, b).

De�nition 2.5 We all simple ontinued fration and we write:

z = a/b = [0, u1 . . . , ui, . . . , un] with z = 0 +
1

u1 +
1

. . . +
1

un−1 +
1

un



We all k-th onvergent the simple ontinued fration formed of the k + 1 �rst partial quotients: zk = pk

qk
=

[0, u1, . . . , uk].

There exists a reursive transformation for omputing the pattern of a standard line from the simple ontinued

fration of its slope [2℄. We all E the mapping from the set of positive rationnal number smaller than one onto

Freeman-ode's words de�ned as follows. First terms are stated as E(z0) = 0 and E(z1) = 0u11 and others are

expressed reursively:

E(z2i+1) = E(z2i)
u2i+1E(z2i−1) (1)

E(z2i) = E(z2i−2)E(z2i−1)
u2i

(2)

In the following, the omplexity of a pattern is the depth of its deomposition in simple ontinued fration.

We reall a few more relations:

pkqk−1 − pk−1qk = (−1)k+1
(3)

(pk, qk) = uk(pk−1, qk−1) + (pk−2, qk−2) (4)

We now fous on omputing vetor relations between leaning points (upper and lower) inside a pattern. In

the following we will onsider a DSS(a, b, 0) in the �rst otant starting at the origin and ending at its seond

lower leaning point (whose oordinate along the x-axis is positive). We de�ne a/b = zn = [0, u1, . . . , un] for
some n. Points will be alled U1,L1, U2 and L2 as shown in Fig. 1. We an state U1L1 = U2L2 and

U1U2 = L1L2 = (b, a). We reall that the Freeman moves of [U1, L1] are the same as those of [U2, L2].
Furthermore Freeman moves between U1 and U2 form the pattern (a, b) and those between L1 and L2 form the

reversed pattern (a, b).

Y

X

L1

L2

U2

E(z2i+1)

E(z2i) E(z2i) E(z2i) E(z2i−1)

p2i

p2i−1

q2i

q2i−1
U1

O

z2i+1 = [0, 2, 2, 3]

Fig. 1. A DSS(a, b, 0) with an odd omplexity of slope, taken between origin and its seond lower leaning point.

Proposition 2.6 A pattern with an odd omplexity (say n = 2i+1) is suh that U1L1 = (u2i+1−1)(q2i, p2i)+
(q2i−1, p2i−1) + (1,−1) and L1U2 = (q2i − 1, p2i + 1). Moreover the DSS [U1, L1] has E(z2i)

u2i+1−1
as a left

fator, and the DSS [L1, U2] has E(z2i−1)
u2i

as a right fator.

Proof. From Eq. (3) we have: p2i+1q2i −p2iq2i+1 = (−1)2i+1+1 = 1, whih an be rewritten as: aq2i − bp2i = 1.
(q2i, p2i) are learly the Bézout oe�ients of (a, b). The remainder of (b + 1 − q2i, a − 1 − p2i) is a + b − 1.
Sine b + 1 − q2i is positive but smaller than b, it is the �rst positive lower leaning point L1 and U1L1 =
(b + 1 − q2i, a − 1 − p2i). Using Eq. (4) yields: U1L1 = ((u2i+1 − 1)q2i + q2i−1 + 1, (u2i+1 − 1)p2i + p2i−1 − 1).
From L1U2 = −U1L1 + U1U2, we further get that L1U2 = (q2i − 1, p2i + 1). From Eq. (1) E(z2i)

u2i+1−1

is a left fator of [U1, U2] but also of [U1, L1]. Writing E(z2i+1) as E(z2i)
u2i+1−1E(z2i−2)E(z2i−1)

u2i+1
, and

expanding L1U2 as (u2iq2i−1 + q2i−2 − 1, u2ip2i−1 + p2i−2 + 1) with Eq. (4), we see that E(z2i−1)
u2i

is a right

fator of [L1, U2]. �

Proposition 2.7 A pattern with an even omplexity (say n = 2i) is suh that U1L1 = (q2i−1 + 1, p2i−1 − 1)
and L1U2 = (u2i − 1)(q2i−1, p2i−1) + (q2i−2, p2i−2) + (−1, 1). Moreover the DSS [U1, L1] has E(z2i−2)

u2i−1
as

a left fator, and the DSS [L1, U2] has E(z2i−1)
u2i−1

as a right fator.



3 Properties of maximal segments for onvex urves

In this setion, we study relations between maximal segments and digital edges of onvex shape digitization.

The dilation of S by a real fator r is denoted by r · S. Let Dm be the digitization of step 1/m, i.e. if S is a

real shape: Dm(S) = (m · S) ∩ Z
2
. The length estimator based on the ity-blok distane is written as L1

.

3.1 Convex digital polygon (CDP)

De�nition 3.1 Γ is a onvex digital polygon (CDP) if its verties (Vi)i=1..e form the minimal set of disrete

points suh that Γ = D1(conv(V1, . . . , Ve)) and Γ is di�erent from the digitization of the onvex hull of any

proper subset of the (Vi). The number of verties or edges of Γ is denoted by ne(Γ) and its perimeter by Per(Γ).

The points on the boundary of P form a 4-onneted ontour. A CDP is also alled a lattie onvex polygon

[14℄. An edge is the Eulidean segment joining two onseutive verties, and a digital edge is the disrete segment

joining two onseutive verties. It is lear that we have as many edges as digital edges and as verties. From

haraterizations of disrete onvexity [5℄, we learly see that:

Proposition 3.2 Eah digital edge of a CDP is either a pattern or a suession of the same pattern whose

slope is the one of the edge. In other words, both verties are upper leaning points of the digital edge.

We now reall one theorem onerning the asymptoti number of verties of CDP that are digitization of

ontinuous shapes. It omes from asymptoti properties of random polytopes.

Theorem 3.3 (Adapted from Balog, Bárány [1℄) If S is a plane onvex body with C3
boundary and positive

urvature then

c1(S)m
2
3 ≤ nv(conv(Dm(S))) ≤ c2(S)m

2
3

where the onstants c1(S) and c2(S) depend on extremal bounds of the urvatures along S. Hene for a dis c1

and c2 are absolute onstants.

3.2 Links between maximal segments and edges of CDP

Maximal segments are DSS: between any two upper (resp. lower) leaning points lays at least a lower (resp.

upper) leaning point. The slope of a maximal segment is then de�ned by two onseutive upper and/or lower

leaning points. Digital edges are patterns and their verties are upper leaning points (from Prop. 3.2). Thus,

verties may be upper leaning points but never lower leaning points of maximal segments. Sine a digital edge

is a DSS, we get

Lemma 3.4 A maximal segment annot be stritly ontained into a digital edge.

We now introdue a speial lass of digital edge.

De�nition 3.5 We all supporting edge, a digital edge whose two verties de�ne leftmost and rightmost upper

leaning points of a maximal segment.

Relations between maximal DSS and digital edges are given by the following lemmas:

Lemma 3.6 A supporting edge de�nes only one maximal segment: it is the only one ontaining the edge and it

has the same slope. If a maximal segment ontains two or more upper leaning points then there is a supporting

edge linking its leftmost and rightmost upper leaning points with the same slope. If a maximal segment ontains

three or more lower leaning points then it has a supporting edge.

Lemma 3.7 If a maximal segment is de�ned by only two onseutive lower leaning points then it has one upper

leaning point whih is some vertex of the CDP by onvexity.

Lengths of maximal segments and digital edges are tightly intertwined, as shown by the two next propositions.

Proposition 3.8 Let [VkVk+1] be a supporting edge of slope

a
b made of f patterns (a, b) and let MS be the

maximal segment assoiated with it (Lemma 3.6). Their lengths are linked by the inequalities:

L1(VkVk+1) ≤ L1(MS) ≤ f + 2

f
L1(VkVk+1) − 2 and

1

3
L1(MS) ≤ L1(VkVk+1) ≤ L1(MS) ≤ 3L1(VkVk+1)



Proof. Verties Vk and Vk+1 are leftmost and rightmost upper leaning points of MS. The points Vk − (b, a),
Vk+1 + (b, a) while learly upper leaning points of the standard line going through [VkVk+1] annot belong

to the CDP. Hene MS annot extends further of its supporting edge of more than |a| + |b| − 1 points on

both sides. Consequently L1(MS) ≤ L1(VkVk+1) + 2(|a| + |b| − 1). Using L1(VkVk+1) = f(|a| + |b|) brings:

L1(VkVk+1) ≤ L1(MS)) ≤ f+2
f L1(VkVk+1) − 2. Worst ases bring L1(VkVk+1) ≤ L1(MS) ≤ 3L1(VkVk+1) �

Proposition 3.9 Let MSk′
be a maximal segment in the on�guration of Lemma 3.7, and so let Vk be its upper

leaning point. The length of the maximal segment is upper bounded by:

L1(MSk′) ≤ 4
(

L1(Vk−1Vk) + L1(VkVk+1)
)

Proof. We all L1, L2 the leftmost and rightmost lower leaning points and U2 ≡ Vk the upper leaning point

(see Fig. 1). Suppose that MSk′
has a slope with an odd omplexity (say 2i + 1). Proposition 2.6 implies

L1(L1U2) = q2i + p2i. There is learly a right part of [L1U2] (i.e. [L1Vk]) that is ontained in [Vk−1Vk] and
touhes Vk. The pattern E(z2i−1)

u2i
is a right fator of [L1U2] (Proposition 2.6 again). It is indeed a right

fator of [Vk−1Vk] too, sine it annot extends further than Vk−1 to the left without de�ning a longer digital

edge. We get [Vk−1Vk] ⊇ E(z2i−1)
u2i

and the length inequality L1(Vk−1Vk) ≥ u2i(q2i−1 + p2i−1).
From Eq. (4), we have: q2i + p2i = u2i(q2i−1 + p2i−1) + q2i−2 + p2i−2 and q2i−2 + p2i−2 ≤ q2i−1 + p2i−1. We

obtain immediately L1(L1U2) = q2i + p2i ≤ (u2i + 1)(q2i−1 + p2i−1). By omparing this length to the length of

the digital edge [Vk−1Vk], we get L1(L1U2) ≤ u2i+1
u2i

L1(Vk−1Vk).

Proposition 2.6 and similar arguments on [VkVk+1] brings L1(U2L2) ≤ u2i+1

u2i+1−1L1(Vk−1Vk). Worst ases are

then L1(L1U2) ≤ 2L1(Vk−1Vk) and L1(U2L2) ≤ 2L1(VkVk+1). The ase where MSk′
has a slope with an even

omplexity (say 2i) uses Prop. 2.7 and is treated similarly.

Sine MS has only one upper leaning point, it annot be extended further than L1(U2L2) on the left and

L1(L1U2) on the right (Lemma 3.6 ). We thus get L1(MSk′) ≤ 4(L1(Vk−1Vk) + L1(VkVk+1)). �

The proof of the following theorem is given in Appendix B for limited spae reasons.

Theorem 3.10 Let E be a supporting edge whose slope has a omplexity n, n ≥ 2, then the maximal segment

ontaining E inludes at most n other edges on eah side of E.

Corollary 3.11 The shortest pattern of a supporting edge for whih a maximal segment ontains 2n+1 digital

edge is zn = [0, 2, . . . , 2]. If the DCP is enlosed in a m × m grid, then the maximal number n of digital edges

inluded in one maximal segment is upper bounded as: n ≤ log 4m√
2

log (1+
√

2)
− 1.

Proof. The number L = [0, 2, . . . , 2, . . .] is a quadrati number equal to −1+
√

2. Its reursive haraterization

is Un = 2Un−1 + Un−2 with U0 = 0 and U1 = 1. Solving it leads to Un =
√

2
4

(

(1 +
√

2)n − (1 −
√

2)n
)

. Hene

asymptotially, Un ≈
√

2
4 (1 +

√
2)n

and lim Un

Un+1 n→∞
= L.

The shortest edge (whose slope is an n-th onvergent of L) that �ts into an m×m grid is suh that Un+1 ≤ m.

We thus obtain that n ≤ log 4m√
2

log (1+
√

2)
− 1. �

3.3 Asymptoti number and size of maximal segments

We assume in this setion that the digital onvex polygon Γ is enlosed in a m×m grid. We wish to ompute a

lower bound for the number of edges related to at least one maximal segment. We show in Theorem 3.12 that

this number is signi�ant and inreases at least as fast as the number of edges of the DCP divided by log m.

From this lower bound, we are able to �nd an upper bound for the length of the smallest maximal segment of a

DCP (Theorem 3.13). We �rst label eah vertex of the DCP as follows: (i) a 2-vertex is an upper leaning point

of a supporting edge, (ii) a 1-vertex is an upper leaning point of some maximal segment but is not a 2-vertex,

(iii) 0-verties are all the remaining verties. The number of i-verties is denoted by ni. Given an orientation

on the digital ontour, the number of edges going from an i-vertex to a j-vertex is denoted by nij .

Theorem 3.12 The number of supporting edges and of 1-verties of Γ are related to its number of edges with

ne(P )

Ω(log m)
≤ n1 + 2n22. (5)

An immediate orollary is that there are at least ne(Γ)/Ω(log m) maximal segments.



Proof. From Theorem 3.10 and its Corollary 3.11, we know that a DSS hene a maximal segment annot

inlude more than Ω(log m) edges. Hene there annot be more than Ω(log m) 0-verties for one 1-vertex or

for one 2-vertex. We get n00 ≤ (n1 + n2)Ω(log m). We develop the number of edges with eah possible label:

ne(Γ) = n22 + n02 + n12 + n20 + n21 + n00 + n01 + n10 + n11. Sine, n02 + n12 ≤ n22, n20 + n21 ≤ n22 and

n01 +n10 +n11 ≤ 3n1, we get ne(Γ) ≤ 3n22 +n00 +3n1. Noting that a 2-vertex annot be isolated by de�nition

of supporting edges (De�nition 3.5) gives n2 ≤ 2n22. One inserted in n00 ≤ (n1 + n2)Ω(log m) and ompared

with ne(Γ), we get the expeted result. �

We now relate the DCP perimeter to the length of maximal segments.

Theorem 3.13 The length of the smallest maximal segment of the DCP Γ is upper bounded:

min
l

L1(MSl) ≤ Ω(log m)
Per(Γ)

ne(Γ)
. (6)

Proof. We have Per(Γ) =
∑

ne
L1(Ei). We now may expand the sum on supporting edges (22-edges), on edges

touhing a 1-vertex, and on others. Edges touhing 1-verties may be ounted twie, therefore we divide by 2

their ontribution to the total length.

∑

ne

L1(Ei) ≥
∑

n22

L1(E22
j ) +

1

2

∑

n1

L1(E?1
k−1) + L1(E1?

k ) (7)

For the �rst term, eah supporting edge indexed by j (a 22-edge) has an assoiated maximal segment, say

indexed by j′. From Proposition 3.8, we know that L1(E22
j ) ≥ 1

3L1(MSj′).
For the seond term, eah 1-vertex indexed by k is an upper leaning point of some maximal segment indexed

by k′
. Proposition 3.9 holds and L1(E?1

k−1) + L1(E1?
k ) ≥ 1

4L1(MSk′).
Putting everything together in Eq. (7), we get:

∑

ne

L1(Ei) ≥
1

3

∑

n22

L1(MSj′) +
1

8

∑

n1

L1(MSk′) ≥ (
1

3
n22 +

1

8
n1)min

l
L1(MSl) ≥

1

8
(n1 + 2n22)min

l
L1(MSl)

Inserting the lower bound of Theorem 3.12 into the last inequality onludes. �

4 Asymptoti properties of shapes digitized at inreasing resolutions

We may now turn to the main interest of the paper: studying the asymptoti properties of disrete geometri

estimators on digitized shapes. We therefore onsider a plane onvex body S whih is ontained the square

[0, 1] × [0, 1] (w.l.o.g.). Furthermore, we assume that its boundary γ = ∂S is C3
with everywhere stritly

positive urvature. This assumption is not very restritive sine people are mostly interested in regular shapes.

Furthermore, the results of this setion remains valid if the shape an be divided into a �nite number of

onvex and onave parts; eah one is then treated separately. The digitization of S with step 1/m de�nes

a digital onvex polygon Γ(m) insribed in a m × m grid. We �rst examine the asymptoti behavior of the

maximal segments of Γ(m), both theoretially and experimentally. We then study the asymptoti onvergene

of a disrete urvature estimator. We show that ontrary to what was thought its onvergene is still an open

problem. Experimental evaluation on�rms this result.

4.1 Asymptoti behavior of maximal segments

The next theorem summarizes the asymptoti size of the smallest maximal segment wrt the grid size m.

Theorem 4.1 The length of the smallest maximal segment of Γ(m) has the following asymptoti upper bound:

min
i

L1(MSi(Γ(m))) ≤ Ω(m1/3 log m) (8)

Proof. Theorem 3.13 gives for the DCP Γ(m) the inequality mini L1(MSi(Γ(m))) ≤ Ω(log m)Per(Γ(m))
ne(Γ(m)) . Sine

Γ(m) is onvex inluded in the subset m × m of the digital plane, its perimeter Per(Γ(m)) is upper bounded

by 4m. On the other hand, Theorem 3.3 indiates that its number of edges ne(Γ(m)) is lower bounded by
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c1(S)m2/3
. Putting everything together gives mini L1(MSi(Γ(m))) ≤ Ω(log m) 4m

c1(S)m2/3 whih is one redued

what we wanted to show. �

Although there are points on a shape boundary around whih maximal segments grow as fast as O(m1/2)
(the ritial points in [11℄), some of them do not grow as fast. A loser look at the proofs of Theorem 3.13

shows that a signi�ant part of the maximal segments (at least Ω(1/(log m))) has an average length that grows

no faster than Ω(m1/3 log m). This fat is on�rmed with experiments. Fig. 2, left, plots the size of maximal

segments for a disk of radius 1 digitized with inreasing resolution. The average size is learly loser to m1/3

than to

√
m.

4.2 Asymptoti onvergene of disrete geometri estimators

A useful property that a disrete geometri estimator may have is to onverge toward the geometri quantity

of the ontinuous shape boundary when the digitization grid gets �ner [3, 4, 9℄. It may be expressed as follows,

De�nition 4.2 Let F be any geometri desriptor on the shape S with boundary γ and digitizations Γ(m). The
disrete geometri estimator E asymptotially onverges toward the desriptor F for γ i�

|E(Γ(m)) −F(γ)| ≤ ǫ(m) with lim
m→+∞

ǫ(m) = 0. (9)

Of ourse, interesting disrete geometri estimator should onverge for a large lass of urves. We now reall

the de�nition of a disrete urvature estimator based on the estimation of an osulating irle [3℄.

De�nition 4.3 Let P be any point on a disrete ontour, Q = B(P ) and R = F (P ) are the extremities of the

longest DSS starting from P (alled half-tangents). Then the urvature estimator by irumirle κ̂(P ) is the

inverse of the radius of the irle irumsribed to P , Q and R.

Experiments show that this estimator rather orretly estimates the urvature of disrete irles on average

(≈ 10% error). It is indeed better than any other urvature estimators proposed in the litterature. Theorem B.4

of [3℄ demonstrates the asymptoti onvergene of this urvature estimator, subjet to the hypothesis:

Hypothesis 4.4 Half-tangents on digitized boundaries grow at a rate of Ω(
√

m) with the resolution m.

However, with our study of maximal segments, we an state that

Claim 4.5 Hypothesis 4.4 is not veri�ed for digitizations of C3
-urves with stritly positive urvature. We

annot onlude on the asymptoti onvergene of the urvature estimator by irumirle.

Proof. It is enough to note that half-tangents, being DSS, are inluded in maximal segments and may not

be longer. Furthermore, sine maximal segments over the whole digital ontour, some half-tangents will be

inluded in the smallest maximal segments. Sine the smallest maximal segments have a length upper bounded



by Ω(m1/3 log m) (Theorem 4.1), the length of some half-tangents has the same upper bound, whih is smaller

than Ω(
√

m). �

The asymptoti onvergene of a urvature estimator is thus still an open problem. Furthermore, preise

experimental evaluation of this estimator indiates that it is most ertainly not asymptotially onvergent,

although it is atually on average one of the most stable disrete urvature estimator (see Fig. 2, right). Former

experimental evaluations of this estimator were averaging the urvature estimates on all ontour points. The

onvergene of the average of all urvatures does not indue the onvergene of the urvature at one point.

5 Conlusion

We show in this paper the relations between edges of onvex hulls and maximal segments in terms of number

and sizes. We provide an asymptotial analysis of the worst ases of both measures. A onsequene of the study

is the refutation of an hypothesis related to the asymptoti growth of maximal segments and whih was essential

in proving the onvergene of a urvature estimator based on DSS and irumirles [3℄. Our work also applied

to digital tangents sine their onvergene relies on the same hypothesis. The existene of a onvergent disrete

estimator of urvature based on DSS is thus still a hallenging problem and we are urrently investigating it.

Referenes

[1℄ Antal Balog and Imre Bárány. On the onvex hull of the integer points in a dis. In SCG '91: Proeedings

of the seventh annual symposium on Computational geometry, pages 162�165. ACM Press, 1991.

[2℄ Jean Berstel. Mots, Mélanges o�erts a M.P. Shützenberger, hapter Traé de droites, frations ontinues

et morphisme itérés, pages 298�309. Hermès, 1990.

[3℄ D. Coeurjolly. Algorithmique et géométrie pour la aratérisation des ourbes et des surfaes. PhD thesis,

Université Lyon 2, Déembre 2002.

[4℄ D. Coeurjolly and R. Klette. A omparative evaluation of length estimators of digital urves. IEEE Trans.

on Pattern Anal. and Mahine Intell., 26(2):252�257, 2004.

[5℄ Chul E.Kim. Digital onvexity, straightness, and onvex polygons. IEEE Trans. on Pattern Anal. and

Mahine Intell., 6(6):618�626, 1982.

[6℄ F. Feshet and L. Tougne. Optimal time omputation of the tangent of a disrete urve: appliation to the

urvature. In Disrete Geometry and Computer Imagery, Leture Notes in Computer Siene 1568, pages

31�40. Springer Verlag, 1999.

[7℄ F. Feshet. and L. Tougne. On the Min DSS Problem of Closed Disrete Curves. In A. Del Lungo, V. Di

Gesù, and A. Kuba, editors, IWCIA, volume 12 of Eletoni Notes in Disrete Math. Elsevier, 2003.

[8℄ G.H. Hardy and E.M. Wright. An introdution to the theory of numbers. Oxford University Press, fourth

edition, 1960.

[9℄ R. Klette and J. Zuni. Multigrid onvergene of alulated features in image analysis. Journal of Mathe-

matial Imaging and Vision, 13:173�191, 2000.

[10℄ V. Kovalevsky and S. Fuhs. Theoretial and experimental analysis of the auray of perimeter estimates.

In Förster and Ruwiedel, editors, Pro. Robust Computer Vision, pages 218�242, 1992.

[11℄ J.-O. Lahaud. On the onvergene of some loal geometri estimators on digitized urves. Researh Report

1347-05, LaBRI, University Bordeaux 1, Talene, Frane, 2005.

[12℄ J.-O. Lahaud, A. Vialard, and F. de Vieilleville. Analysis and omparative evaluation of disrete tangent

estimators. In E. Andrès, G. Damiand, and P. Lienhardt, editors, Pro. Int. Conf. Disrete Geometry for

Computer Imagery (DGCI'2005), Poitiers, Frane, LNCS. Springer, 2005. To appear.

[13℄ J.-P. Réveillès. Géométrie disrète, alul en nombres entiers et algorithmique. Thèse d'etat, Université

Louis Pasteur, Strasbourg, 1991.

[14℄ K. Voss. Disrete Images, Objets, and Funtions in Z
n
. Springer-Verlag, 1993.



A Proof of Proposition 2.7

PROOF: (ex prop 2.8) From Eq. (3) we have: p2iq2i−1 − p2i−1q2i = (−1)2i+1 = −1, whih an be rewritten

as: a(−q2i−1)− b(−p2i−1) = 1 and eventually a(q2i − q2i−1)− b(p2i − p2i−1) = 1. We learly ontain the Bézout

oe�ients. From its remainder we get the relatives oordinates of L1, as: U1L1 = (q2i−1 + 1, p2i−1 − 1). From
L1U2 = −U1L1 + U1U2 we get : L1U2 = ((u2i − 1)q2i−1 + q2i−2 − 1, (u2i − 1)p2i−1 + p2i−2 + 1). Using

E(z2i) = E(z2i−2)
u2i−1+1E(z2i−3)E(z2i−1)

u2i−1
and U1L1 = (u2i−1q2i−2 + q2i−3 + 1, u2i−1p2i−2 + p2i−3 − 1),

it is lear that E(z2i−2)
u2i−1

is a left fator of the DSS between U1 and L1. From Eq. (2) and L1U2 we learly

see that E(z2i−1)
u2i−1

is a right fator of the DSS between L1 and U2. �

B Proof of Theorem 3.10

Lemma B.1 We all Pn a pattern of omplexity n whose Freeman ode is E(zn). One an build strit right

and left fators (alled respetively R and L) of Pn suh that:

(i) [RPn], [PnL] and [RPnL] are DSS of slope zn,

(ii) R and L are patterns (or suessions of the same pattern) ,

(iii) RPn, PnL and RPnL are not patterns,

(iv) the slope of R is greater than that of Pn and the slope of Pn is greater than that of L,

(v) maximal omplexity of slope of R and L depends on parity of n:
Complexity of Pn maximal omplexity of R maximal omplexity of L

2i + 1 2i + 1 2i
2i 2i − 1 2i

(vi) Complexity of fators obtained by substrating R or L from Pn depends on parity of n:
Complexity of Pn omplexity of Pn r R omplexity of Pn r L

2i + 1 2i 2i + 1
2i 2i 2i − 1

Proof. Sine R and L are strit fators of Pn, their Freeman moves are ompatible with those of E(zn), giving
same slope when R,Pn and L are put together. Thus [RPnL] is a DSS of slope zn. From digital straightness we

learly have digital onvexity (see [5℄). Upper leaning points of this DSS are loated at extremities of Pn.

We simply hoose among strit fators R and L those that are patterns so that they �t desriptions given in

Eq. (1) and Eq. (2). We may now desribe them given the parity of n.
Consider the ase where n is odd (say n = 2i + 1), from Eq. (1) we get: R = E(z2i)

u2i+1−rE(z2i−1) and

L = E(z2i)
u2i+1−l

. If R and L are longer patterns, they are no longer strit fators of P2i+1. We see that R is

a pattern of omplexity 2i + 1 and that L is a suession of the pattern E(z2i), with a omplexity of 2i. Fator
obtained by substrating R from P2i+1 equals E(z2i)

r
and substrating L from P2i+1 gives E(z2i)

lE(z2i−1).

The slope of R equals z′2i+1 = [0, u1, . . . , u2i, u2i+1 − r] =
p′
2i+1

q′
2i+1

. From Eq. (4) we get that

p2i+1

q2i+1
=

p′
2i+1+rp2i

q′
2i+1

+rq2i
.

The sign of z′2i+1 − z2i+1 is that of p′2i+1q2i − q′2i+1p2i, and is positive (see Eq. (3)). Thus the slope of R is

greater than that of P2i+1. Same reasoning applied to z2i+1 − z2i brings that the slope of P2i+1 is greater than

that of L.
Consider now that n is even (say n = 2i), from Eq. (2) we get: R = E(z2i−1)

u2i−r
and L = E(z2i−2)E(z2i−1)

u2i−l
.

If R and L are longer patterns, they are no longer strit fators of P2i. Clearly, R has a omplexity of 2i−1 and

that of L equals 2i. Fator obtained by substrating R from P2i equals E(z2i−2)E(z2i−1)
r
and substrating L

from P2i gives E(z2i−1)
l
. The slope of L equals z′2i = [0, u1, . . . , u2i−1, u2i − l] =

p′
2i

q′
2i
. From Eq. (4) we get that

p2i

q2i
=

p′
2i+lp2i−1

q′
2i+lq2i−1

. The sign of z2i − z′2i is that of q′2ip2i−1 − p′2iq2i−1, and is positive (see Eq. (3)). Thus the slope

of Pn is greater than that of L. Same reasoning applied to z2i−1 − z2i brings that the slope of R is greater than

that of Pn.

It is now lear that slopes are stritly dereasing from R to Pn and from Pn to L whatever the parity of n. �

Proof. [of Theorem 3.10℄ We onstrut 2n digital edges around E:

• (Ri)1≤i≤n at left of E,



• (Li)1≤i≤n at right of E.

These edges are suh that [Rn . . . Ri . . . R1EL1 . . . Lj . . . Ln] is a DSS of slope zn = a/b and has no upper lean-
ing points but those loated on E. E may ontain several time the pattern E(zn). It is lear that Rn . . . Ri . . . R1

(resp. L1 . . . Lj . . . Ln) has to be a right (resp. left) strit fator of E(zn). Moreover Ri is a right strit fator of

E(zn) r R1 . . . Ri−1 and Li is a left strit fator of E(zn) r L1 . . . Li−1. From Proposition 3.2 any of the digital

edges (Ri)1≤i≤n and (Li)1≤i≤n is a pattern or a suession of the same pattern. From Eq. (1) and Eq. (2) two

suessive digital edges with same omplexity (say n) annot form a right or left strit fator of a pattern with

same omplexity. Thus omplexities of (Ri)1≤i≤n and (Li)1≤i≤n are dereasing when i inreases. Moreover to

full�l onvexity properties, slopes of edges are dereasing from Rn to Ln.

We now build (Ri)1≤i≤n when n is odd (say n = 2i + 1). From Lemma B.1, R1 has a omplexity that equals

2i + 1 and R2 is a right strit fator of a pattern whose omplexity equals 2i. Applying Lemma B.1 brings R2

with a omplexity of 2i − 1. Applying the same reasoning reursively brings other edges as shown on Table 1.

Lemma B.1 also bring requirements with dereasing slopes and maximality in omplexity of fators.

Construtions for the three other ases are given in Tables 2, 3, 4 and follow the same reasoning. To satisfy

full deomposition eah (uk)1≤n has to be equal or greater than 2. If this ondition is not meet for some k, than
steps assoiated with it (e.g. any fators ontaining uk − rj or uk − lj as powers of some pattern) are skipped.

Table 1. Construtions of (Ri)1≤i≤n when n = 2i + 1.

R1 E(z2i)
u2i+1−r1E(z2i−1)

R2 E(z2i−1)
u2i−r2

R3 E(z2i−2)
u2i−1−r3E(z2i−3)

R4 E(z2i−3)
u2i−2−r4

.

.

.

.

.

.

R2j E(z2i+1−2j)
u2i+2−2j−r2j

R2j+1 E(z2i−2j)
u2i+1−2j−r2j+1E(z2i−1−2j)

.

.

.

.

.

.

R2i+1 0u1−r2i+11

Table 2. Construtions of (Li)1≤i≤n when n = 2i + 1.

L1 E(z2i)
u2i+1−l1

L2 E(z2i−2)E(z2i−1)
u2i−l2

L3 E(z2i−2)
u2i−1−l3

L4 E(z2i−4)E(z2i−3)
u2i−2−l4

.

.

.

.

.

.

L2j E(z2i−2j)E(z2i+1−2j)
u2i+2−2j−l2j

L2j+1 E(z2i−2j)
u2i+1−2j−l2j+1

.

.

.

.

.

.

L2i+1 0u1−l2i+1



Table 3. Construtions of (Ri)1≤i≤n when n = 2i.

R1 E(z2i−1)
u2i−r1

R2 E(z2i−2)
u2i−1−r2E(z2i−3)

R3 E(z2i−3)
u2i−2−r3

R4 E(z2i−4)
u2i−3−r4E(z2i−5)

.

.

.

.

.

.

R2j E(z2i−2j)
u2i+1−2j−r2j E(z2i−1−2j)

R2j+1 E(z2i−1−2j)
u2i−2j−r2j+1

.

.

.

.

.

.

R2i 0u1−r2i1

Table 4. Construtions of (Li)1≤i≤n when n = 2i.

L1 E(z2i−2)E(z2i−1)
u2i−l1

L2 E(z2i−2)
u2i−1−l2

L3 E(z2i−4)E(z2i−3)
u2i−2−l3

L4 E(z2i−4)
u2i−3−l4

.

.

.

.

.

.

L2j E(z2i−2j)
u2i+1−2j−l2j

L2j+1 E(z2i−2−2j)E(z2i−1−2j)
u2i−2j−l2j+1

.

.

.

.

.

.

L2i 0u1−l2i


