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Abstract7

The main contribution of this paper is the definition of multi-label simple points

ensuring that the partition topology remains invariant during a deformation

process. The definition is based on intervoxel properties, and uses the notion

of collapse on cubical complexes. This work is an extension of a restricted

definition that prohibits the move of intersections of boundary surfaces. A de-

formation process is carried out with a greedy energy minimization algorithm.

A discrete area estimator is used to approach at best standard regularizers clas-

sically used in continuous energy minimizing methods. The effectiveness of

our approach is illustrated by the deformation of topologically correct initial

partitions of a 3D medical image to minimize its energy.
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1. Introduction10

Segmentation is a crucial step in any image analysis process. Over the past11

twenty years, energy-minimizing techniques have shown a great potential for12

segmentation. They combine in a single framework two terms, one expressing13

the fit to data, the other describing shape priors and acting as a regularizer.14

Furthermore, as noted by many authors, the parameter balancing the two15

terms acts as a scale factor, providing a very natural multiscale analysis of16

images. Deformable models (Kass et al., 1988), Mumford-Shah approximation17
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(Mumford and Shah, 1989), geometric or geodesic active contours and other18

levelset variants (Caselles et al., 1993; Malladi et al., 1995; Caselles et al., 1997;19

Vese and Chan, 2002), are classical variational formulation (i.e. continuous) of20

such techniques. Our objective is to propose a novel energy-minimizing model21

for segmenting 3D images into regions, a kind of deformable digital partition22

with the following specific features.23

(i) It is a purely digital formulation of energy minimization, which can be24

solved by combinatorial algorithms. We use a simple greedy algorithm.25

(ii) The standard area regularizer is mimicked in this digital setting by a26

discrete geometric estimator.27

(iii) It encodes both region structures and the geometry of their interfaces. It28

may thus incorporate any kind of fit to data energy, region-based like29

quadratic deviation (Mumford and Shah, 1989; Chan and Vese, 2001) or30

contour-based like strong gradients (Kass et al., 1988).31

(iv) We propose a new method to guarantee that the topology of the whole32

partition is preserved during the deformation process.33

Point (i) is interesting from a fundamental point of view. Continuous vari-34

ational problems induce partial differential equations which are solved iter-35

atively. They are most often bound to get stuck in local minima, except in36

specific cases (Cohen and Kimmel, 1997; Chan and Vese, 2001; Ardon and Co-37

hen, 2006). To our knowledge, none of them are able to find the optimal image38

partition if more than two regions are expected. In discrete settings, the op-39

timal solution to the two label partitioning is computable (Greig et al., 1989).40

For more regions, optimization algorithms can guarantee to be no further away41

than two times the optimal value (Boykov et al., 2001), and scale-sets within42

pyramids present solutions that are experimentally very close to the optimal43

solution (Guigues et al., 2006; Pruvot and Brun, 2007). However, the regular-44

ization/shape prior term of these discrete methods is most often reduced to45

the number of surfels of the region boundaries, a very poor area estimator.46
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Boykov and Kolmogorov (Boykov and Kolmogorov, 2003) have proposed to47

enrich the neighborhood graph to get finer area estimators — in a way simi-48

lar in spirit to chamfer distances — but their approach is for now limited to49

a 26-neighborhood. We propose here a combinatorial analog of a variational50

formulation of image segmentation which is much closer to the continuous51

formulation than existing graph techniques. In the present paper, we use only52

greedy combinatorial optimization schemes, which entails that our model may53

also be stuck in local minima, but the proposed framework let us free to test54

more elaborate combinatorial optimization algorithm.55

Point (ii) allows us to be closer to the classical continuous variational for-56

mulation of image segmentation. We indeed propose an original regularization57

term which uses a discrete geometric estimator for computing the area of each58

surfel. Its principle is to extract maximal digital straight segments to estimate59

the surfel normal, area being a byproduct (Lachaud and Vialard, 2003). Such60

estimators are known to have good convergence behavior as the resolution61

gets finer and finer. We get therefore a digital equivalent of continuous ac-62

tive surfaces minimizing their area, which is also an 3D extension of discrete63

deformable boundaries (Lachaud and Vialard, 2001).64

Point (iii) is important to get a versatile segmentation tool. According to the65

image characteristics, it is well known that contour or region based approaches66

are more or less adapted. From a minimization point of view, region-based67

energies are generally more “convex”, thus easier to optimize (Chan and Vese,68

2001; Vese and Chan, 2002). Our partition model allows to mix energies defined69

on regions and energies defined on boundaries. To our knowledge, very few70

explicit or implicit variational or deformable models can do that in 3D, except71

perhaps the work of Pons and Boissonnat (Pons and Boissonnat, 2007), but they72

may not model energies depending on the inclusion between regions.73

In this paper we focus on the last point which is mandatory for such de-74

formable model. Point (iv) is important in several specific image applications75

where the topology of anatomic components is a prior information, like atlas76

matching. This is even truer in 3D images, where anatomic components are77
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intertwined in a deterministic way. Preserving the topology of a two label par-78

tition in a discrete setting is generally done by computing and locating simple79

points (Bertrand, 1994). Similar tools are used in level set techniques to control80

topology changes (Han et al., 2003; Ségonne, 2008). For a multi-label partition,81

a few authors have proposed an equivalent to simple points in a discrete setting82

(Ségonne et al., 2005; Bazin et al., 2007). However, they are computationally83

too costly to be used to drive the evolution of a digital partition.84

This paper is an extension of the work (Dupas et al., 2009), where a first85

notion of simple point in a partition was proposed. This first definition was86

enough to simulate movements of boundaries between two regions, but it for-87

bade movements of boundaries between three or more regions (1-dimensional88

boundaries). We propose here a more general definition of simple points in89

multi-label partitions, which we call ML-simple points (ML for Multi-Label).90

This new definition gives more freedom to the evolving partition. Updat-91

ing ML-simple points induces movements of surface, edges, and points be-92

tween regions, while preserving at all steps the initial partition topology. ML-93

simpleness is computable in constant time, thanks to our intervoxel encoding.94

ML-simpleness is sometimes a bit too restrictive and may forbid valid evolu-95

tion. But our experiments show that it was not a problem in our context.96

The paper is organized as follows. Section 2 recalls standard notions of dig-97

ital geometry used later on. Section 3 presents the definition of ML-simpleness98

and proves that it implies simpleness. The ML-simpleness test derives from the99

definition. Section 4 describes a first digital deformable partition model that100

uses ML-simple points to ensure the preservation of the topology and Sect. 5101

shows some experiments.102

2. Preliminary Notions103

The first subsection recalls standard digital topology notions based on vox-104

els. The second subsection gives further definitions for intervoxel topology.105

The third subsection presents the definitions related to cubical cell complexes106
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and the last subsection gives our first restricted version of ML-simpleness.107

2.1. Images and Voxels Notions108

A voxel is an element of the discrete space Z3. A 3D image is a finite set of109

voxels I (the image domain), and a mapping between these voxels and a set of110

colors or a set of gray levels (the image values). Each voxel v is associated with111

a label l(v), a value in a given finite set L. These labels can be obtained from the112

image by a segmentation algorithm.113

We use the classical notion of α-adjacency, with α ∈ {6, 18, 26}. The set of114

voxels α-adjacent to v is noted N∗α(v), and thus we define Nα(v) = N∗α(v) ∪ {v}.115

An α-path between two voxels v1 and v2 is a sequence of voxels between v1 and116

v2 such that each pair of consecutive voxels is α-adjacent. A set of voxels S is117

α-connected iff there is an α-path between any pair of voxels of S, having all its118

voxels in S.119

We consider the relation induced by being 6-connected and having the120

same label. This is an equivalence relation over the image domain, and the121

equivalence classes are the regions of the image. We consider an infinite region122

r0 that “surrounds” the image (i.e. r0 = Z3
\ I. There is only one infinite123

region, which is not necessarily 6-connected if the image has some holes). The124

complement set of a region X in I is denoted by X̄. We extend the notion of125

adjacency to regions: two regions R1 and R2 are α-adjacent if there is one voxel126

in R1 and one voxel in R2 that are α-adjacent. One voxel v is α-adjacent to a127

region R if there is a voxel in R which is α-adjacent to v.128

Now, we recall notations and definitions from (Bertrand, 1994). The set of129

α-connected components of a set of voxels X is called Cα(X). The geodesic130

neighborhood of v in X of order k is the set Nk
α(v,X) defined recursively by:131

N1
α(v,X) = N∗α(v,X) ∩ X, and Nk

α(v,X) =
⋃
{Nα(Y) ∩N∗26(v) ∩ X, Y ∈ Nk−1

α (v,X)}.132

In other words, Nk
α(v,X) is the set of voxels x belonging to N∗26(v) ∩ X such133

that it exists an α-path π from v to x of length at most k, all the voxels of π134

belonging to N∗26(v) ∩ X.135

In this paper, we use only the couple of neighborhood (6, 18) (6 for object and136
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18 for background). In this framework, we obtain the 6-geodesic neighborhood137

G6(x,X) = N3
6(x,X) and the 18-geodesic neighborhood G18(x,X) = N2

18(x,X).138

From these notations, Bertrand (Bertrand, 1994) defines the notion of simple139

points in a (6, 18)-connectivity as given in Definition 1.140

Definition 1 (Simple points (Bertrand, 1994)). A voxel v is simple for a set X141

if #C6 [G6(v,X)] = #C18
[
G18(v, X̄)

]
= 1, where #Ck[Y] denotes the number of142

k-connected components of a set Y.143

2.2. Intervoxel Topology144

Given an image, we describe the boundaries of its regions by using the145

classical notion of intervoxel (Kovalevsky, 1989). In this intervoxel framework,146

we do not only consider voxels but we also consider all the elements of the147

subdvision of the discrete space in unit elements: voxels are unit cubes, surfels148

are unit squares between voxels, linels are unit segments between surfels, and149

pointels are the points between linels.150

In the rest of this paper, we use the following notations:151

• for a voxel v: surfels(v) is the set of the six surfels between v and all its152

6-neighbors;153

• for a surfel s: linels(s) is the set of the four linels between s and its adjacent154

surfels;155

• for a linel l: pointels(l) is the set of the two pointels between l and its156

adjacent linels.157

We extend these notations to any set of elements. Given a set of voxels V,158

surfels(V) is the union of surfels(v) for all v in V (the same for linels(S), S being159

a set of surfels, which is the union of linels(s) for all s in S, and for pointels(L),160

L being a set of linels, which is the union of pointels(l) for all l in L).161

To simplify notations, we use also the following notations. Given a voxel162

v, linels(v) denotes linels(surfels(v)), and pointels(v) denotes pointels(linels(v)).163

Given a surfel s, we use pointels(s) to denote of pointels(linels(v)).164
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A pointel p and a linel l (resp. a linel l and a surfel s, a surfel s and a voxel165

v) are incident if p ∈ pointels(l) (resp. l ∈ linels(s), s ∈ surfels(v)). By transitivity,166

we say that a linel l is incident to a voxel v if l is incident to a surfel s which is167

incident to v (and similarly for other cells, like for a pointel incident to a surfel168

or to a voxel). Two linels (resp. surfels) are adjacent if there is a pointel (resp.169

linel) incident to both linels (resp. surfels).170

We define SF as the set of boundary surfels of I: SF = {surfel s|s separates171

two voxels with different labels}. We can remark that any surfel incident to a172

voxel of the infinite region and to a voxel of I belong to SF since the label of the173

infinite region is by convention distinct from any other label. Given a voxel v,174

we define s f (v) = surfels(v)∩ SF. This is the set of boundary surfels incident to175

the given voxel v.176

In the following, we need to study the contact area between a voxel and a177

region. For that, we note s(v,R) = {surfel s|s ∈ surfels(v) and s is incident to a178

voxel distinct from v in region R}, and l(v,R) = {linel l|l ∈ linels(v) and the two179

surfels incident to l and not to v are incident to two voxels of R}. The contact180

area between v and R is thus c(v,R) = {l(v,R), s(v,R)}. Pointels are not taken181

into account here due to the couple of neighborhood considered (6, 18).182

There are five possible configurations for c(v,R):183

1. no surfel: s(v,R) = ∅, i.e. v is not 6-adjacent to R;184

2. sphere: s(v,R) contains the 6 surfels incident to v, and l(v,R) contains the185

12 linels incident to v;186

3. disconnected: there is at least two surfels s1 and s2 in s(v,R) for which there187

is no path of surfels in s(v,R) such that each couple of consecutive surfels188

are adjacent and separated by a linel in l(v,R); or there is a linel in l(v,R)189

which is not incindent to a surfel in s(v,R);190

4. with holes: the complementary of the set of linels and surfels in c(v,R) is191

composed by at least two connected components, thus c(v,R) has at least192

an hole;193

5. disk: all the other cases i.e. a non empty connected set of surfels and linels194
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such that its complementary is non empty and connected.195

A discrete surface is defined as a set of surfels that border a region (Herman,196

1998; Kovalevsky, 2008). It has been shown that discrete surfaces have the197

Jordan property, i.e. such a surface separates the set of voxels in two regions:198

an interior and an exterior. A discrete surface is noted ∂(R) = {surfel s ∈ SF|s199

is incident to R}. To study the subset of a discrete surface that separates two200

distinct regions R and R′, we note f (R,R′) = {surfel s|s is incident to R and to201

R′} ( f stands for the frontier between R and R′). If R and R′ are not 6-adjacent,202

f (R,R′) is empty. We can easily prove that ∂(R) is the union for all R′ , R of203

f (R,R′).204

Given a linel l, its degree d(l) is the number of boundary surfels incident to205

l, thus d(l) = |{sur f els|s ∈ SF and s is incident to l}|. Note that d(l) is 0, 2, 3 or 4,206

but never 1. Given a linel l and a voxel v, we denote by d(l, v) the degree of l207

restricted to boundary surfels incident to v, thus d(l, v) = |{sur f els|s ∈ s f (v)}|.208

2.3. Cubical Complexes and Collapse209

In this paper, we use another notion of simplicity defined on surfaces.210

Therefore, we use the work of (Couprie and Bertrand, 2008) which defines the211

notion of simple sets for cubical complexes. We recall here the main notions of212

this paper restricted to the specific case used in this work, called specific cubical213

complex (SCC).214

A cubical complex is a set of elements having various dimensions (which215

are pointels, linels, surfels, voxels), glued together by adjacency and incidence216

relations. In this work, we only use cubical complexes made of a set of surfels,217

plus all the linels and pointels incident to these surfels: this is what we call218

SCC. For these reasons, we can describe these specific cubical complexes only219

by giving their set of surfels.220

A face of a SCC is a surfel, linel or pointel incident to a surfel of the complex.221

A facet of a SCC is one of its surfels. We note X+ the set of facets of the SCC X,222

i.e. the set of its surfels.223
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A SCC is always closed (because it contains all the linels and pointels inci-224

dent to surfels): thus the closure1 of a SCC X, noted X−, is equal to X. Moreover,225

let X be a cubical complex, for each S included in X+, S− is a subcomplex of X226

(the SCC containing the surfels of S plus all the linels and pointels incident to227

these surfels).228

Intuitively, a subcomplex of a complex X is simple if its removal from X229

does not change the topology of X. In this work, we use this notion to ensure230

that the topology of each surface is preserved.231

This notion of simplicity is defined using the collapse operation which is232

a discrete analogue of a continuous deformation (more precisely, a retract by233

deformation).234

Let X be a SCC, and let (l, s) be an ordered pair such that l is a linel belonging235

to X and s is a surfel belonging to X. The pair (l, s) is a free pair for X if l is incident236

to s, and there is no other surfel in X (distinct from s) incident to l. Intuitively,237

the linel l is on the “border” of X. Then, the complex X \ {l, s} is an elementary238

collapse of X. Now, a SCC X collapses onto a complex Y if there is a sequence239

of elementary collapse going from X to Y (in this work, we use the collapse240

operation between a SCC X, and a cubical complex made of linels plus all the241

pointels incident to the linels).242

Let X and Y two SCC, X W Y = (X+
\ Y+)−. This is the SCC obtained by243

removing from the surfels in X all the surfels in Y.244

The attachment of Y for X is the complex defined by Att(Y,X) = Y∩ (XWY).245

It is the set of linels and pointels which are incident both to Y and to X W Y.246

Now we use the collapse definition to prove that the topology of a surface247

is unchanged when removing some of its surfels, or when adding some new248

surfels. Therefore, we use the two following definitions from Couprie and249

Bertrand (2008):250

1. the complex Y is simple for X if and only if Y collapses onto Att(Y,X);251

1In the general case, the closure of a cubical complex is obtained by adding each face of the

complex.
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(a) (b)

Figure 1: Configuration where the central voxel is ML-simple. In each case, we

intend to swap the voxel into the darker region. (a) The voxel is rML-simple:

for each linel l in linels(v) we have d(l) = 0 or d(l) = 2. (b) The voxel is not

rML-simple: there is one linel l incident to the central voxel with d(l) = 3.

2. the complex X ∪ Y collapses onto X if and only if Y collapses onto X ∩ Y.252

In such a case, we say that Y is add-simple for X.253

2.4. Preliminary Work254

In (Dupas et al., 2009), we give a first definition of multi-label simple points255

allowing to preserve both the topology of regions and the surface relations,256

recalled in Definition 2. In this paper, we refer to this previous definition as257

restricted multi-label simple points (rML-simple points). The definition allows258

to change the label of a rML-simple voxel, and guarantees that the topology of259

the partition is preserved. However, modifications of the edges of the partition260

are not allowed: a voxel incident to a linel of degree 3 or degree 4 is not an261

rML-simple point, even if it is possible to change its label while preserving the262

topology of the regions (see Fig. 1).263

Definition 2 (Restricted Multi-Label simple points). A voxel x is rML-simple264

if:265

1. for each l in linels(x), we have either d(l) = 0 or d(l) = 2;266

2. s f (x) is homeomorphic to a 2-disk;267

3. for each l in linels(x), d(l, x) = 0 implies d(l) = 0.268
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3. Multi-Label Simple Points269

In this paper, we extend Definition 2 to the deformation of any voxel that270

preserves the topology of the partition, even when edges are moved. Given271

a voxel x in some region X, the deformation operation, called flip, consists to272

remove x from X by changing the label of x. In this context, the main tool to273

control the topology modification is the notion of simple point. However, there274

are two main differences with classical notion of simple points. Firstly we deal275

with multi-label images and not binary images. Secondly we want to preserve276

the topology of regions but also the topology of surfaces between the regions.277

3.1. Definition of Multi-Label Simple Points278

Before giving the definition of multi-label simple points, we study the flip279

operation in multi-label images, and the related modifications on discrete sur-280

faces. Using the modifications, we are able to define simple configurations. Let281

x be a voxel belonging to a region X, the operation that flips x in the region R (R282

being 6-adjacent to region X) consists in removing voxel x from X and adding283

x to R. Note that R and X are the only regions modified, but we also need284

to look at the modifications on the intervoxel boundaries of the regions: each285

surfel incident to x that is between X and another region O , X before the flip,286

becomes a surfel between R and O after the flip. The flip implies the following287

modifications of surfaces:288

• f (X,R) ← f (X,R) \ s(x,R) ∪ s(x,X); all the surfels that are between voxel289

x ∈ X and R before the flip are removed from the surface between X and290

R, and all the surfels that are between voxel x ∈ X and X before the flip291

are added to the surface between X and R;292

• For any region O with O , X, O , R: f (X,O) ← f (X,O) \ s(x,O); all the293

surfels that are between voxel x ∈ X and O before the flip are removed294

from the surface between O and X;295
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• For any region O with O , X, O , R: f (R,O) ← f (R,O) ∪ s(x,O); all the296

surfels that are between voxel x ∈ X and O before the flip are added to297

the surface between O and R.298

To define the notion of multi-label simple point, which preserves the topol-299

ogy of the partition, we have to guarantee that the topology of region X and300

region R is preserved, and that the topology of each surface is also preserved.301

Definition 3 gives the new definition of multi-label simple points (called ML-simple302

points) which guarantees these two properties.303

Definition 3 (ML-simple points). A voxel x, belonging to region X, is ML-304

simple for region R if:305

1. c(x,R) is homeomorphic to a 2-disk;306

2. c(x,X) is homeomorphic to a 2-disk;307

3. for each region O 6-adjacent to v, distinct from X and R: s(x,O) is simple308

for f (X,O); and s(x,O) is add-simple for f (R,O).309

There are three main differences with the definition of rML-simple points.310

First, the condition “for each l in linels(x), we have either d(l) = 0 or d(l) = 2” is311

removed to process voxels incident to several regions and not only voxels in a312

binary 18-neighborhood. The condition is replaced by the new condition (3) to313

ensure that the topology of R is preserved after the flip.314

Second, the condition “s f (x) is homeomorphic to a 2-disk” is replaced by315

conditions (1) and (2) of Definition 3. In the previous definition there are316

only two regions in the 18-neighborhood of x, s f (x) is homeomorphic to a 2-317

disk. Thus, the complementary of s f (x) is also homeomorphic to a 2-disk. In318

Definition 3 several regions are adjacent to x, so we have to check that both319

c(x,R), and c(x,X) are homeomorphic to 2-disks. Conditions (1) and (2) are320

necessary to ensure that both the topology of R and the topology of X are321

preserved. Moreover, to detect configurations where two surfels are adjacent322

but separated by a linels incident to another region (as seen in the example of323

Fig. 2d), the test uses linels in addition to surfels.324
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Third, the new condition (3) guarantees that the topology of other surfaces325

incident to x remains unchanged. The two subproperties induce that removal326

and addition of each set of surfels from or to original surfaces does not modify327

the surface topology. For the removed surfels, it prevents any topological328

modification but also any vanishing of existing surface. For the added surfels,329

it forbids the creation of a new surface.330

Note that all the conditions are local since they are all restricted to surfels or331

linels incident to the considered voxel. In condition (3) the set of surfels s(x,O)332

is a subset of the 6 surfels incident to x. Thus, the tests if s(x,O) is simple for333

f (X,O) and if s(x,O) is add-simple for f (R, 0) are achieved locally, whatever334

f (X,O) and f (R, 0), since by definition the test is restricted to the study of the335

intersection of these sets with s(x,O) (see Sect. 2.3).336

In the following, we first detail the different parts of Definition 3. Then, we337

prove that each rML-simple point is an ML-simple point. Last, we prove the338

main properties of ML-simple points: i.e. they are simple points, and flipping339

this kind of voxel preserves the topology of both regions and surfaces.340

Informally, each one of the three conditions of Definition 3 allows:341

1. to ensure that the topology of R is preserved when flipping x in R: if c(x,R)342

is not homeomorphic to a 2-disk, flipping x in R involves a topological343

modification. If s(x,R) is empty, this creates a new cavity which is an344

isolated region containing v. If s(x,R) = surfels(x), x is isolated and345

flipping x in R removes a cavity of R. If s(x,R) is not homeomorphic to346

a 2-disk, then either c(x,R) is made of two connected components (for347

example two opposite surfels, or two adjacent surfels but without the348

incident linel in l(x,R)) or c(x,R) has a hole. In the first case flipping x in R349

creates a tunnel in R, and in the last case flipping x in R removes a tunnel350

of R (see Fig. 2a);351

2. to preserve the topology of X: if c(x,X) is not homeomorphic to a 2-352

disk, removing x from X involves, similarly to the previous condition, the353

removal or creation of a cavity or a tunnel of X (see Fig. 2b and Fig. 2d);354
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Figure 2: Examples of rejected configurations. In each case, we intend to flip

the central voxel x (belonging to region X) into the darker region (region R).

(a) Rejected by condition (1): c(x,R) is not homeomorphic to a 2-disk. (b) Re-

jected by condition (2): c(x,X) is not homeomorphic to a 2-disk. (c) Rejected by

condition (3): s(x, 1) is not add-simple for f (X, 1). (d) Rejected by condition (2).

c(x,X) is not homeomorphic to a 2-disk since the linel between the two surfels

does not belong in l(x,X).

3. to preserve the topology of each surface f (X,O) when removing surfels355

s(x,O), and to preserve the topology of each surface f (R,O) when adding356

surfels s(x,O). This condition have to be satisfied for each surface between357

X and a region O 6-adjacent to x and different from R (see Fig. 2c and Fig. 3).358

3.2. Restricted Multi-Label Simple Points are Multi-Label Simple Points359

First, we prove that the previous definition of rML-simple points, (configu-360

rations where linels do not move), are ML-simple points (i.e. that the previous361

definition is included into the new one). This shows that we do not miss362

previous configurations which have been proved to be simple points.363

Proposition 1. If x ∈ X is an rML-simple point, then x is a ML-simple point for the364

second region R adjacent to x.365

P. Since x ∈ X is an rML-simple point, the following properties are satisfied366

(cf. Definition 3): (1) ∀l ∈ linels(x), d(l) ∈ {0, 2}; (2) s f (x) is homeomorphic to367

a 2-disk; (3) ∀l ∈ linels(x), d(l, x) = 0 ⇒ d(l) = 0. By using the Lemma 1 in368

(Dupas et al., 2009), we know that there are only two regions in N18(x), X which369

contains x and R the second region. Thus, we have s(x,R) equals to s f (x).370
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Figure 3: Examples of rejected configurations due to condition (3). In each

case, we intend to flip the central voxel x (belonging to region X) into the

darker region (region R). In both cases, the first two conditions are satisfied.

The flip does not modify the topology of regions, but modifies the topology of

frontiers between regions. (b) s(x,A) is not simple for f (X,A). (a) s(x,B) is not

add-simple for f (R,B) (here s(x,A) is simple for f (X,A) and s(x,B) is simple for

f (X,B)).

We prove that all the conditions of Definition 3 are satisfied.371

First, let us prove that c(x,R) is homeomorphic to a 2-disk. We have s(x,R)372

equals to s f (x) and s f (x) is homeomorphic to a 2-disk. Moreover, for each linel373

l incident to two surfels in s(x,R), we have d(l) equals 2 (by condition (1) of374

rML-simple point definition) which implies that l is in l(x,R). Thus, s(x,R) is375

homeomorphic to a 2-disk with all the linels between these surfels in l(x,R):376

this shows that c(x,R) is homeomorphic to a 2-disk.377

For c(x,X), we use the fact that s(v,X) is the complementary of s(v), i.e. is378

the set of the 6 surfels incident to v minus s f (v) (because there are only two379

regions in N18(v)). Hence s(v,X) is homeomorphic to a 2-disk, otherwise s f (v)380

would not be homeomorphic to a 2-disk. For the linels, we have for each linel l381

incident to two surfels in s(x,X), d(l, x) equals 0 which implies d(l) equals 0 (by382

condition (3) of rML-simple point definition). These linels belong to l(x,X) and383
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for the same reason as above, we can conclude that c(x,X) is homeomorphic to384

a 2-disk.385

Condition (3) is satisfied by vacuity since there is no other region distinct386

from X and R that is 6-adjacent to v.387

Note that the reverse proposition is false: an ML-simple point is, in the388

general case, not an rML-simple point (as seen in Fig. 1). The goal of the389

extended definition is to allow the flipping of more voxels, namely the voxels390

adjacent to more than two regions, which were classified as non simple in the391

rML-simple point definition.392

3.3. Multi-Label Simple Points are Simple Points393

Now we prove that the topology of regions is preserved when flipping an394

ML-simple point. For that, we start by showing that ML-simple points are395

simple points for the two modified regions.396

Proposition 2. If x ∈ X is an ML-simple point for R, then x is a simple point for X397

and for R.398

P. First, if there are exactly two regions in N18(x) (i.e. X and R), we know399

by Proposition 1 of (Dupas et al., 2009) that x is simple for R. Since the 18-400

neighborhood of x is limited to binary case, and by definition of simple points401

the topology of the complementary of R is preserved: we can deduce that the402

topology of X is also preserved, and thus that x is simple for X.403

The case where there are only one region in N18(x) is impossible since x404

cannot be an ML-simple point in this configuration.405

In cases with more than two regions, we use a proof similar to the one in406

(Dupas et al., 2009), by proving the contrapositive of Proposition 2, i.e. if x is407

not a simple point for R, then x is not an ML-simple point. Let n1 be equal to408

#C6 [G6(x,R)] and n2 be equal to #C18
[
G18(x, R̄)

]
, we know that the voxel x is not409

simple in the four following cases: (1) n1 = 0, (2) n2 = 0, (3) n1 ≥ 2, (4) n2 ≥ 2.410

Let us prove that the voxel x is not an ML-simple point in each case:411
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1. n1 = 0. There is no 6-connected component of voxels belonging to R in412

G6(x,R): s(x,R) is empty, and thus c(x,R) is not homeomorphic to a disk413

which contradicts condition (1) of Definition 3.414

2. n2 = 0. There is no 18-connected component of voxels belonging to R̄ in415

G18(x, R̄): s(x,X) is empty, and thus c(x,X) is not homeomorphic to a disk416

which contradicts condition (2) of Definition 3.417

3. n1 ≥ 2: there are at least two 6-connected components of voxels belonging418

to R in G6(x,R). If there are two 18-adjacent voxels v1 and v2 in two419

different connected components, then the voxel v3 , x 6-adjacent to v1420

and to v2 belongs to R̄ (otherwise there is only one connected component)421

and thus c(x,R) is not homeomorphic to a disk since the linel l incident to422

x, v1 and v2 is not in l(x,R), and there is no other path of surfels between423

these two surfels, otherwise v1 and v2 would be in the same connected424

component. This contradicts condition (1) of Definition 3.425

If there is no voxels v1 and v2 in two different connected components426

that are also 18-adjacent, the connected components are separated by x.427

In this case, c(x,R) is not homeomorphic to a disk (it is an annulus) in428

contradiction to condition (1).429

4. n2 ≥ 2: there are at least two 18-connected components of voxels be-430

longing to R̄ in G18(x, R̄). If there are two voxels v1, v2 ∈ N6(x) in two431

different connected components, then v1 and v2 are not 18-adjacent (oth-432

erwise there is only one connected component), and thus all other voxels433

in N6(x) belong to R. Hence, c(x,R) is not homeomorphic to a disk, which434

contradicts condition (1) of Definition 3.435

If there is no two voxels of N6(x) in two different connected components,436

that means one of them (say v1) belongs to N18(x) \ N6(x), and that all437

the voxels in N6(x), except v2, belong to R (otherwise we are either in438

the case of the previous paragraph, or there is only one 18-connected439

components of voxels belonging to R̄), and thus s(x,R) contains the five440

surfels incindent to x and not to v2.441

The linel l incident to v1 and x is not in l(x,R) (since the two 6-neighbors442
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of v1 in N6(x) belong to R while v1 does not): c(x,R) has a hole and thus is443

not homeomorphic to a disk in contradiction to condition (1). �444

We can make a similar proof for the proposition: if x is not a simple point for445

X, then x is not an ML-simple point. This is done again by showing that in446

each case where x is not simple, there is a contradiction with a condition of447

Definition 3 (and in this second part of the proof, condition (2) is used instead448

of condition (1)).449

Since regions distinct from X and R are not modified by the flip operation, this450

proves that the topology of all regions in the image is preserved. Note that the451

reverse proposition is false: simple points are not ML-simple points (in Fig. 3,452

for both examples, voxel v is simple but not ML-simple).453

Now we prove that the topology of each surface is preserved. This proof is454

straightforward by using the works in (Couprie and Bertrand, 2008).455

Proposition 3. If x is an ML-simple point for R, the topology of each surface is456

unchanged by flipping x in R.457

P. First, let us study the surfaces between O, a region 6-adjacent to x,458

distinct from X and R, and regions X and R, and prove that the topology459

of these surfaces is preserved. This is a direct consequence of condition (3)460

of Definition 3, and the definition of simplicity in cubical complexes. Since461

f (X,O) ← f (X,O) \ s(x,O), and s(x,O) is simple for f (X,O), the topology of462

f (X,O) before and after the flip remains the same. Since f (R,O) ← f (R,O) ∪463

s(v,O), and s(x,O) is add-simple for f (R,O), the topology of f (R,O) before and464

after the flip remains the same.465

Second, let us study the surface between X and R. This surface cannot disap-466

pear, otherwise s(x,R) is empty and that contradicts condition (1) of ML-simple467

point definition. This surface cannot be cut in two connected components, nor468

topologically modified. We have ∂X that is the union of all surfaces f (X,O), for469

all O , X, i.e. ∂X equals to f (X,R) plus f (X,O), for all O , X and , R. Since470

we have shown that the topology of region X is unchanged (no modification of471
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tunnels nor cavities), and since the topology of each surface f (X,O) is preserved472

for all O , X and , R, the topology of f (X,R) is also unchanged. Otherwise ∂X473

is modified.474

Since no other surfaces are modified, the topology of each surface in the475

image is unchanged by the flip. �476

3.4. Detection of Multi-Label Simple Points477

Now we present an algorithm allowing to detect if a given voxel is a ML-478

simple point. For that, we need to be able to retrieve efficiently intervoxel479

information. This is achieved by using two matrixes. The first one is a matrix480

which encodes the regions, i.e. the voxel labels. The second one is an intervoxel481

matrix which encodes the borders of the regions in the 3D image. For each482

intervoxel cell c, this matrix store the state of c (“on” or “off”) depending on the483

three following rules:484

• a surfel s is “on” iff s ∈ SF (i.e. s is between 2 voxels with different labels);485

• a linel l is “on” iff l is incident to > 2 “on” surfels;486

• a pointel p is “on” iff p is incident to 1 or > 2 “on” linels.487

We use the intervoxel matrix in Algo. 4 to determine if voxel v is ML-simple.488

This algorithm uses the two functions given in Algo. 1 and Algo. 2. The first489

function tests if a set of surfels is homeomorphic to a disk, and the second490

function tests if a set of surfels can collapse on a set of linels. For these two491

algorithms, we use the property that the set of surfels is a subset of the surfels492

incident to a given voxel, and that the set of linels is also a subset of the linels493

incident to the same voxel. These two properties allow to define algorithms494

with constant time complexity since the number of cases is limited.495

Algorithm 1 tests if the set S is homeomorphic to a disk by checking that496

it does not correspond to one of the four configurations where S is not a disk.497

The first case (|S| = 0) corresponds to S is empty. The second case (|S| =498

6) corresponds to S is homeomorphic to a sphere. The third case is if S is499
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composed of two opposite surfels. The fourth case is if S is composed of 4500

surfels homeomorphic to an annulus.

Algorithm 1: D(S)
Data: set S of surfels incident to a voxel x.

Result: true iff S is homeomorphic to a disk.

if |S| = 0 or |S| = 6 then1

return f alse;2

if S = {s1, s2} then3

if s1 and s2 are adjacent then return true;4

else return f alse;5

if |S| = 4 then6

let s1 and s2 be the two surfels incident to x < S;7

if s1 and s2 are adjacent then return true;8

else return f alse;9

return true;10

501

Algorithm 2 tests if the set of surfels S can collapse on the set of linels L by502

considering the two possible cases (more precisely the CSS obtained from S by503

adding all linels and pointels incident to surfels in S can collapse on the cubical504

complex obtained from L by adding all pointels incident to a linel in L). The505

first case is if S is homeomorphic to a disk: S can collapse on L if only if L is506

homeomorphic to a segment. The second case is if S is homeomorphic to an507

annulus: S can collapse on L if and only if L is homeomorphic to a circle. To test508

if L is homeomorphic to a segment, we consider two different cases. If |L| = 1, L509

is homeomorphic to a segment. If |L| > 1, we check if each linel in L is adjacent510

to one or two other linels in L, and there is exactly two linels that are adjacent511

to only one other linel. For the circle, the test is similar but all linels in L have512

to be adjacent to exactly 2 linels in L, and there must be only one connected513

component (to avoid case where L is homeomorphic to 2 circles). Note that this514

algorithm is not generic and can not be used for any set of surfels, but only for515
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the set of surfels we test during the simple point detection algorithm.

Algorithm 2: (S,L)
Data: set S of surfels incident to a voxel x;

set L of linels incident to x.

Result: true iff S can be collapsed on L.

if D(s(x,R)) then1

return L is homeomorphic to a segment;2

return L is homeomorphic to a circle;3

516

Algorithm 3 tests if a contact area c(x,R) is homeomorphic to a disk. For517

that, it uses the remarks given in Sect. 2.2 about all the possible configurations.518

Algorithm 3: D(c(x,R) = (L,S))
Data: contact area (c(x,R) between voxel x and region R.

Result: true iff (c(x,R) is homeomorphic to a disk.

if |S| = 0 then return f alse;1

if |S| = 6 and |L| = 12 then return f alse;2

s1 ← one surfel in S;3

make a depth first search algorithm on S starting from s1;4

if number of visited surfels , |S| or ∃l ∈ L, l is not incident to a surfel in S then5

return f alse;6

s2 ← one surfel not in S;7

make a depth first search algorithm on S̄ starting from s1;8

if number of visited surfels , |S̄| or ∃l ∈ L̄, l is not incident to a surfel in S̄ then9

return f alse;10

return true;11

519

Line 1 is the case if there is no surfel between x and R, and line 2 is the520

contact area is homeomorphic to a sphere. In both cases, the algorithm returns521
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false. The next step (between lines 3 and 6) consists in testing if the contact522

area is connected. The last step (between lines 7 and 10) is the test if the523

complementary of the contact area is connected, to detect if the surface has an524

hole or not. In both cases, the test consists in a depth first search algorithm525

through the concerned set of surfels by passing only through linels of the given526

set of linels. The algorithm returns false if it has not visited all the surfels, or if527

a linel is not incident to the set of surfels. Last, we have tested all the possible528

configurations, and we are sure that c(x,R) is a non empty connected set of529

surfels not homeomorphic to a sphere and without hole: it is homeomorphic530

to a disk and the algorithm returns true.531

Now by using these functions, Algo. 4 checks if a given voxel x is ML-simple532

for a region R.

Algorithm 4: Detection of ML-simple points
Data: intervoxel matrix;

voxel x ∈ X;

region R.

Result: true iff x is an ML-simple point for R.

if not D(c(x,R)) then return f alse;1

if not D(c(x,X)) then return f alse;2

foreach region O ∈ N6(x), O , X, O , R do3

L1 ← {l ∈ linels(s(x,O))|l ∈ linels( f (X,O) \ s(x,O))};4

if not (s(x,O),L1) then return f alse;5

L2 ← {l ∈ linels(s(x,O))|l ∈ linels( f (R,O))};6

if not (s(x,O)),L2) then return f alse;7

return true;8

533

The two first tests of this algorithm correspond directly to the first conditions534

of Definition 3. For the last condition we have detailed the simple and add-535

simple notions.536
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First, to test if Y = s(x,O) is simple for Z = f (X,O), we use the first proposi-537

tion recalled in Sect. 2: the complex Y is simple for X if and only if Y collapses538

onto Att(Y,Z). Att(Y,Z) is the set of linels and pointels that are incident both539

to Y and to Z W Y. We consider only linels since pointels can be retrieved from540

linels (in our case each complex is closed). Thus, we have to test if Y collapses541

onto the set of linels incident both to Y and to Z W Y.542

Second, to test if Y = s(x,O) is add-simple for Z = f (R,O), we use the second543

proposition: Z∪Y collapses onto Z if and only if Y collapse onto Z∩Y. Since Z544

and Y have no common surfels, Z ∩ Y is the set of linels incident both to Y and545

Z (plus the pointels incident to these linels).546

Thus, the two cases of simple and add-simple can be tested using Algo. 2547

on the correct set of linels.548

Proposition 4. Given a voxel x and a region R, Algo. 4 returns true iff x is an549

ML-simple point.550

P. The first two tests check conditions (1) and (2). We test if c(x,R) and551

c(x,X) are homeomorphic to a disk by calling Algo. 3 on the set of surfels and552

linels respectively between x and R, and between x and X.553

The last test checks condition (3): we use Algo. 2 that tests if a set of surfels554

can collapse on a set of linels. As explained above, the two tests are respectively555

equivalent to test if s(x,O) is simple for f (X,O), and if s(x,O) is add-simple for556

f (R,O).557

All the conditions of Definition 3 are satisfied, x is ML-simple and the558

algorithm returns true accordingly. �559

First, the complexity of Algo. 2 is O(1). There are 6 surfels in surfels(v) and560

12 linels in linels(v), and the complexity of each step of the algorithm can be561

bounded by these two numbers. Second, the complexity of Algo. 3 is O(1) since562

the number of visited surfels in both depth first search algorithm is at most 6.563

Finally, the complexity of Algo. 4 is O(1): to compute the set of linels L1, we564

test the 12 linels incident to v, and for each linel l, we verify if l satisfies the565
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other conditions: l is incident to a surfel incident to region O, and l is incident566

to a surfel between regions X and O that is not incident to v. These tests can be567

achieved in constant time using two matrices, one of voxel and one of intervoxel568

elements. The same principle is used to compute the second set of linels L2.569

Thus, the computation of the two sets can be achieved by a constant number570

of operations, and testing if L is homeomorphic to a segment or to a circle can571

also be achieved by a constant number of operations.572

4. Deformable Model Process573

We developed a digital deformable partition model based on the definition574

of ML-simple points. The geometry of the partition is encoded by an inter-575

voxel matrix and deformations are carried out by flipping ML-simple voxels.576

Proposition 3 ensures that the topology of the partition is preserved. The de-577

formation is guided by an energy-minimizing process. In this work, the energy578

has a simple definition to show the feasibility of a deformable partition model579

based on ML-simple voxels flips.580

The energy of a partition is defined as the sum of the energies of each digital581

surface S between pairs of regions (r1, r2). The energy of a surface S is the582

weighted sum of Er, a region based energy, and Es an area based energy.583

Energy Er is an energy describing the quality of the fit of regions to image584

data. Energy Er is the sum of the Mean Squared Error (MSE) of r1 and r2: as the585

region becomes more homogeneous, the value of Er(S) decreases.586

Energy Es is based on a discrete area estimator proposed in (Lachaud and587

Vialard, 2003) that gives an estimation of the area of one surfel s in the digital588

surface represented by the set of surfels containing s. As the set of surfels589

changes depending on the surface side, the area estimation for a surfel also590

depends on the surface side. The energy of a surfel is defined as the sum of the591

estimated area of s from the side of r1 and the estimated area from the side of r2.592

Energy Es is the sum of the energy of each surfel of S: as the surface becomes593

smoother, the value of Es decreases.594
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The deformation process of a surface follows a greedy optimization algo-595

rithm. The initial energy of the surface is first computed. Then, for each surfel596

of the surface, the process temporary flips ML-simple voxels adjacent to the597

surfel and computes the resulting energy. Last, the flip that most reduces the598

energy is definitively applied.599

The deformation algorithm is executed on every border faces of the par-600

tition. The process iterates until a local minimum energy is reached (i.e. no601

deformation occurs). The deformation process always stops since a finite num-602

ber of surfels is processed and since flips are only applied if the global energy603

strictly decreases.604

5. Experiments605

We present two sets of experiments. First, we run two experiments that606

highlight the advantage of the discrete area estimator over the number of surfel607

as energy for regularization. Second, two examples of a deformation process608

in a multi-label partition are proposed.609

In the first set of experiments, we use a deformation process that is governed610

by the minimization of its estimated area. As input data, we provide noisy611

versions of either a slanted plane or a sphere. A good regularizer should smooth612

these data into a perfect plane or a perfect sphere. Two different regularizing613

energies are compared: one using the number of surfels (NS) and one using the614

discrete area estimator (DAE).615

To experiment the process, test images are generated that contains two re-616

gions separated by one face. In the first experiment, this face is a discrete plane,617

and in the second experiment it is a discrete sphere. Noise is added to the618

discrete surface using many random flip operations. Then, the deformation619

process minimizes the estimated area using the NS or the DAE methods. This620

process smooths the surface, and thus removes some of the noise. We mea-621

sure the resulting surface area and compare it with the theoretical value. The622

measured values are reported into the following tables.623
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Table 1: Smoothing of a noisy plane surface

Size Theoretical NS DAE

10 × 10 141,42 126,73 127,42

15 × 15 318,20 296,13 296,80

20 × 20 565,69 536,25 536,25

25 × 25 883,88 847,07 848,36

30 × 30 1272,79 1228,88 1229,74

Table 1 presents the results of the deformation with such energies on a624

noisy slanted plane. We increase the plane size to observe differences between625

the two energies. In this configuration the two energies give approximately626

the same results. The accuracy of both estimated area depends on the angles627

formed by the plane with the the three mutually perpendicular planes of the628

orthonormal basis. During the smoothing, the deformation process is stopped629

in a local minimum where there is no more ML-simple points that minimize the630

NS or the DAE energies. Since the resulting plane are roughly similar, there is631

no advantage of the DAE based deformation over the NS based one. In fact, in632

this case, the noise perturbates the plane with voxels that induce local change633

of orthants. That kind of perturbation is also removed by an NS energy.634

In the second experiment, presented in Table 2, the same energies are used635

to smooth noisy spheres of different radii. The deformation based on the636

minimization of the DAE energy gives a more accurate result with respect to637

the theoretical value. Actually, the deformation minimizing the number of638

surfels tends to produce a discrete sphere that has an increased radius: the639

smoothed surface is larger. In this configuration, the DAE based deformation640

produces a better result than the NS based one. But, as in the first experiment,641

both deformations reach a local minimum.642

The second sets of experiments consists in optimizing an initial partition643

which contains several regions. The objective is to enhance this initial segmen-644

tation with respect to image and area based energies (see Sect. 4).645
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Table 2: Smoothing of a noizy sphere.

Radius Theoretical NS DAE

5 314,15 456,56 456,56

8 804,24 788,77 737,42

10 1256,63 1800,43 1206,25

12 1809,55 2409,28 1945,09

15 2827,43 3805,52 2768,96

The third experiment shows a segmentation of a 3D medical image with a646

poor initialization, in a way similar to continuous deformable partition models647

(Vese and Chan, 2002). Starting with a topologically correct segmentation of the648

image, the deformation process is used to retrieve shapes in the image while649

keeping topological information. The algorithm is applied on a simulated MRI650

brain image obtained from (Cocosco et al., 1997). The result proposed in this651

paper is a generalized version of the second experiment found in (Dupas et al.,652

2009). According to a prior knowledge the image is composed of five regions653

that are intertwined as displayed on Fig. 4c. In this configuration, there is no654

intersection between the partition boundaries. Figure 4a shows a slice of the655

original image, the initial partition on the same slice is presented Fig. 4b and656

the optimized segmentation is shown in Fig. 4d). The algorithm ensures that657

the topology of the optimized segmentation is the same as the topology of the658

initial partition of the image. The resulting partition is not fully satisfactory,659

but this is mainly due to the chosen energies, which are very rudimentary. This660

will be addressed in future works.661

The fourth experiment presents the deformation of a multi-label partition662

that contains surface intersections. The initial partition is produced by an663

existing algorithm (Dupas and Damiand, 2008) which is supposed to be topo-664

logically correct but represents a poor result with respect to the partition global665

energy. The deformation slightly modifies surfaces of the image to obtain a bet-666

ter result. Figure 5a and Fig. 5b present a slice of the partition before and after667
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(a) (b) (c) (d)

Figure 4: Optimization of an existing partition without intersection of bound-

ary surfaces ensuring that the topology of the partition is preserved. (a) Slice

of a simulated MRI brain image. (b) Initial partition with five regions. (c) Im-

brication tree of the five regions. (d) Resulting segmentation after deformation.

the deformation processes. Borders of regions match more accurately image668

data. Figure 5c shows a piece of the partition produced by a deformation algo-669

rithm that flips only rML-simple points. Figure 5d presents the same piece of670

the partition but produced by the deformation algorithm using the ML-simple671

point definition. The surface intersections are moved in Fig. 5d. This allows672

to obtain a partition with a smaller energy. With this experiment, we show the673

interest of the definition of ML-simple points over rML-simple points to obtain674

a partition with a smaller energy.675

6. Conclusion676

The main contributions of this work are: (i) The definition of ML-simple677

points: a voxel is ML-simple if its removal preserves the topology of the par-678

tition. The ML-simple test algorithm is local, short and easy to implement.679

(ii) Our method is generic: regions and surfaces information can be mixed680

to define energies specialized for various applications. (iii) Our work deals681

with arbitrary multi-label image partitions: we can deform any number of682

surfaces while preserving their topology. The overall computational complex-683

ity depends on the number of surfels of the partition, not on its topological684

complexity. These interests have been illustrated in several preliminary ex-685
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(a) (b) (c) (d)

Figure 5: Optimization of an initial segmentation with intersection of boundary

surfaces by minimizing the partition energy. The topology of the partition is

preserved during the deformation process. (a) Slice of the initial segmentation.

(b) Same slice after deformation. (c) Zoom on the partition produced by a

deformation that flips only rML-simple points. (d) Zoom on the partition

produced by a deformation that flips ML-simple points. The energy of this

partition is smaller than the energy measured for (c).

periments. We may either deform an initial set of arbitrary surfaces like the686

example of included spheres that fit a brain image, or smooth an initial partition687

obtained from a preliminary segmentation.688

In future works, we plan to improve the energies used in the deformable689

model to have a better fit with the image data. The discrete area estimator690

could also be improved, first by making it linear-time in the same way as the691

2D case, second by making it dynamic to avoid global recomputation. This692

would allow the processing of big 3D images. Another research track is to find693

an area estimator with less local minimum, in a way similar to (de Vieilleville694

and Lachaud, 2009) in 2D.695
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