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Abstract

The Voronoi Covariance Measure of a compact set K of Rd is a tensor-valued measure
that encodes geometrical information on K and which is known to be resilient to Hausdorff
noise but sensitive to outliers. In this article, we generalize this notion to any distance-like
function δ and define the δ-VCM. Combining the VCM with the distance to a measure
and also with the witnessed-k-distance, we get a provably good tool for normal estima-
tion that is resilient to Hausdorff noise and to outliers. We present experiments showing
the robustness of our approach for normal and curvature estimation and sharp feature
detection.
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1 Introduction

The estimation of normal vectors and other differential quantities, such as principal curvature
directions and direction of sharp features, has many application in computer graphics, geometry
processing or computational geometry. The output of most acquisition devices is a raw point
cloud, often corrupted with noise. For applications such as surface reconstruction, it is therefore
very useful to be able to perform these estimations directly on such data. Many methods have
been proposed for estimating normal and curvature directions directly from a point cloud,
such as principal component analysis [12], local fitting of polynomials quantities [5], integral
estimates [14], moving least squares [10], statistical normal clustering [4], to name but a few.
Our work is in the continuity of Voronoi-based methods for normal estimations, which have
been introduced in [3] and refined by many authors [9, 2, 13]. These methods are robust to
Hausdorff noise but not outliers. Our contribution is to generalize the Voronoi-based approach,
and combine it to the notion of distance to a measure [7, 11] so as to gain resilience to outliers.

∗This research has been supported in part by the ANR grants DigitalSnow ANR-11-BS02-009, KIDICO
ANR-2010-BLAN-0205 and TopData ANR-13-BS01-0008.
†An extended abstract of this work has been presented at EuroCG 2014.
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Voronoi-based estimation Classical principal component analysis methods try to estimate
normal vectors by fitting a tangent plane. In contrast, Voronoi-based methods try to fit the
normal cones to the underlying shape, either geometrically [3, 9] or using covariance matrices of
Voronoi cells [2, 13]. In [2], the authors estimate the normal at a data point in two steps. They
start by considering the covariance matrix of the union of Voronoi cells of nearby points, with
respect to the center of mass of this union. Then, the normal estimation is given by the the
eigenvector corresponding to the largest eigenvalue of this matrix. In [13], the authors improved
this method by changing the domain of integration and the averaging process. The authors
showed that it is possible to associate to any compact set K a tensor-valued measure, which
they called the Voronoi Covariance Measure of K (VCM). Then, they proved that this notion
is Hausdorff-stable, in the sense that if two compact sets are close in the Hausdorff sense, their
VCM are also close to each other. The VCM of a smooth surface encodes the normal vector
field to this surface; this stability result therefore ensures that this information is kept in the
VCM of a point cloud which is Hausdorff-close to the surface.

Distance to a measure All the aforementioned Voronoi-based methods for normal esti-
mation rely directly or indirectly on the notion of distance function. Recall that the dis-
tance function to a compact subset K of Rd is the function on Rd defined by the formula
dK(x) = minp∈K ‖p− x‖. The stability properties of geometric inference methods based on
the distance function is derived from the stability property of the distance function, namely that
if K and L are Hausdorff-close, then dK and dL are uniformly close. Unfortunately, geometric
data is usually corrupted with outliers, and the hypothesis of Hausdorff noise is not realistic
in practice. To make things worse, even the addition of a single outlier to a point cloud can
perturb the distance function to that point cloud drastically. To counter this difficulty a robust
variant of the notion of distance function to a compact set, called the distance to the measure,
was proposed in [7]. This new definition of distance is able to cope with the presence of some
outliers. Moreover, the distance to a measure is distance-like: this means that it possesses
the regularity properties of distance functions to compact sets which makes them amenable to
geometric inference.

Contributions

• We extend the definition of Voronoi covariance measure of a compact set. More precisely,
we associate to any distance-like function δ, a family of tensor-valued measures called the
δ-Voronoi covariance measure (δ-VCM).

• We show the stability of the δ-VCM. Our main general theorem (Theorem 2.1) asserts
that if a distance-like function δ well approximates the distance function to a compact
set K, then the δ-VCM is close to the VCM of K. When applied to a point cloud P
approximating a surface S of R3, this implies that one can recover the normal vectors of
S very accurately (Proposition 3.1). This estimation is Hausdorff stable and robust to
outliers.

• The distance to a measure of a point cloud being not computable in practice, we replace it
by the witnessed k-distance [11]. We show that the associated VCM still well approximates
the VCM of the underlying surface (Proposition 4.1), which opens the door to practical
computations.

• We show on various examples that the δ-VCM provides a robust normal estimator resilient
to Hausdorff noise and to outliers. For the experiments, we introduce another distance-
like function, the median-k-distance. Although we do not have any guarantee for the

2



VCM based on the median-k-distance, it gives very robust estimations in practice. We
also use the δ-VCM to estimate curvatures and sharp features. Our estimators improve
the results based on the VCM [13] or on the Jet Fitting [5], even when there are no
outliers. They are also compared favorably to the normal classifier of Boulch et al. [4].

Notation In the following we denote by ‖.‖ the Euclidean norm of Rd. We will call tensor a
square matrix. The tensor product v⊗w of two vectors v,w is the d× d matrix whose entries
are defined by (v⊗w)ij = viwj . The d-dimensional ball of center x and radius r is denoted by
B(x, r).

2 δ-Voronoi Covariance Measure

As remarked in [7], many inference results rely only on two properties of the distance function to
a compact set. Any functions satisfying these properties is called distance-like; in particular, the
usual distance function to a compact set is distance-like. The goal of this section is to extend the
definition of Voronoi Covariance Measure of a compact set, introduced in [13] for the purpose
of geometric inference. We associate to any distance-like function δ a tensor-valued measure
called the δ-Voronoi covariance measure or δ-VCM. Our main theoretical result is Theorem 2.1,
which asserts in a quantitative way that if a distance-like function δ is uniformly close to the
distance function to a compact set, then the δ-VCM is close to the VCM of this compact set.
Informally, this theorem shows that one can recover geometric information about a compact
set using an approximation of its distance function by a distance-like function.

2.1 δ-Voronoi Covariance Measure

In this paragraph, we introduce the definitions necessary for the precise statement of the main
theorem. We start by the definition of distance-like function, following [7]. Note that we used
the remark following Proposition 3.1 in [7] to drop the 1-Lipschitz assumption, which follows
from the two other assumptions.

Definition 2.1 (Distance-like function). A function δ : Rd → R+ is called distance-like if

• δ is proper, i.e. lim‖x‖→∞ δ(x) =∞.

• δ2 is 1-semiconcave, that is δ2(.)− ‖.‖2 is concave.

The typical examples of distance-like functions that we will consider are power distances.
Given a point cloud P and a family of non-negative weights (ωp)p∈P , we call power distance to
P the distance-like function δP defined by

δP (x) :=

(
min
p∈P

(
‖x− p‖2 + ωp

))1/2

. (1)

Note that when the weights are all zero, the power distance is nothing but the distance function
to the point cloud P .

Definition 2.2 (δ-VCM). The δ-Voronoi Covariance Measure is a tensor-valued measure.
Given any non-negative probe function χ, i.e. an integrable function on Rd, we associate
a positive semi-definite matrix defined by

Vδ,R(χ) :=

∫
δR

nδ(x)⊗ nδ(x).χ (x− nδ(x)) dx, (2)
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where δR := δ−1((−∞, R]) and where nδ(x) := 1
2∇δ

2(x). Note that this vector field nδ is
defined at almost every point in Rd by the 1-concavity property of distance-like functions.

The tensor Vδ,R(χ) is a convolution of a tensor with the function χ that localizes the
calculation on the support of χ. Intuitively, if χ is the indicatrix of a ball B ⊂ Rd, then
the VCM Vδ,R(χ) is the integral of nδ ⊗ nδ over the set of points of δR that are “projected”
into the ball B.

Example 2.1 (δ-VCM of a distance function). When considering the distance function to a
compact set K, the set dRK coincides with the offset of K with radius R, thus explaining our
choice of notation. Moreover, the vector field ndK has an explicit expression in term of the
projection function pK on K, that is the application that maps a point to its closest neighbor
in K:

ndK (x) = x− pK(x). (3)

Comparing Eq. (2) to Eq. (4.2) in [13] and using this remark, one sees that the dK-VCM defined
here matches the original definition of the VCM of K:

VdK ,R(χ) =

∫
KR

(x− pK(x))⊗ (x− pK(x)).χ(pK(x))dx.

Consider a smooth compact surface S of R3, with exterior unit normal n. If R is chosen
small enough the following expansion holds as r → 0, where ‖.‖op is the operator norm [13]:∥∥∥∥VdS ,R(1B(p,r))−

2π

3
R3r2 [n(p)⊗ n(p)]

∥∥∥∥
op

= O(r3). (4)

This equation shows that one can recover local information about differential quantities from
the VCM of a surface. Note that curvature information is also present in the matrix.

Example 2.2 (δ-VCM of a power distance). Let us give a closed form expression for the VCM
of a power distance, which we will use in the computations. Each power distance defines a
decomposition of the space into a family of convex polyhedra, called power cells, on which the
function δ2

P is quadratic. The power cell of the point p in P is defined by

PowP (p) = {x ∈ Rd;∀q ∈ P, ‖x− p‖2 + ωp ≤ ‖x− q‖2 + ωq}. (5)

When the weight vector ω vanishes, we recover the notion of Voronoi cell. The following Lemma
generalizes Eq. (2.1) in [13], and shows that computing the VCM of a power distance amounts
to computing the covariance matrix of the intersection of each power cell with a ball (see also
Algorithm 1).

Lemma 2.1. Let (P, ω) be a weighted point cloud. Given a probe function χ,

VδP ,R(χ) =
∑
p∈P

χ(p) Mp, (6)

where Mp is the covariance matrix of Cp := PowP (p) ∩ B(p, (R2 − ωp)1/2),

Mp :=

∫
Cp

(x− p)⊗ (x− p)dx. (7)
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Figure 1: Integration domain of δP -VCM. The weighted point cloud P is represented by a union
of circles whose radius are the weights. We suppose χ to be the indicatrix of the ball B(y, r) of
center y and radius r. The number of power cells is less than the cardinal of the point cloud
since one cell is empty.

Proof. Since for every point x in the interior of the power cell PowP (p), nδP (x) = x− p, hence
χ(x− nδP (x)) = χ(p) is constant and one can decompose the integral over power cells

VδP ,R(χ) =
∑
p∈P

χ(p)

∫
PowP (p)∩δRP

(x− p)⊗ (x− p)dx.

Furthermore a computation gives PowP (p)∩δRP = PowP (p)∩B
(
p, (R2 − ωp)1/2

)
, if we consider

that R2 − ωp < 0 defines the empty ball.

2.2 Stability of the δ-VCM

We are now able to state our main theorem, which is a generalization of the stability theorem
for VCM proven in [13]. Our theorem asserts that if the distance function to a compact set K is
well approximated by a distance-like function δ, then the VCM of K is also well approximated
by the δ-VCM. The hypothesis of this theorem is satisfied for instance under the sampling
model considered in [11].

The uniform norm of a function f on Rd is denoted ‖f‖∞ = supRd |f |. Given a Lipschitz
function f with Lipschitz constant Lip(f), we introduce its bounded-Lipschitz norm ‖f‖BL =
‖f‖∞ + Lip(f).

Theorem 2.1. Let K be a compact set and δ a distance-like function. For any bounded
Lipschitz function χ : Rd −→ R+, one has

‖Vδ,R(χ)− VdK ,R(χ)‖op ≤ C1 ‖χ‖BL ‖δ − dK‖
1
2
∞ ,

where C1 is a constant that only depends on R, d and diam(K).

In practice choosing a probe function χ supported in a small ball allows one to recover local
information from the δ-VCM.

Remark 1. A notable feature of this theorem is that the constant in the upper bound depends
only on the diameter of K and not on its local geometry or on its regularity.
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We now recall a simplified version of Davis-Kahan Theorem [8].

Theorem 2.2 (Davis-Kahan). Let M and M ′ be two symmetric matrices, λ an eigenvalue of
M and δλ(M) be the minimum distance between λ and any other eigenvalue of M . Then for
every eigenvector v of M with eigenvalue λ, there exists an eigenpair (λ′, v′) of M ′ such that

|λ− λ′| ≤
√

2‖M −M ′‖op and ‖v − v′‖ ≤
√

2‖M −M ′‖op

δλ(M)
,

provided that ‖M −M ′‖op ≤
√

2 δλ(M).

Remark 2. When the compact set K is a smooth surface S and χrp is the indicatrix of a ball
centered at a point p of S, Equation (4) implies that the eigenvector associated to the highest
eigenvalue of VdK ,R(χrp) gives an estimation of the normal vector to S at p. Indeed, λ = 1
is the only non-vanishing eigenvalue of the matrix M := n(p) ⊗ n(p) and δλ(M) = 1. Hence,
by Davis-Kahan theorem, and under reasonable assumptions, an eigenvector associated to the
highest eigenvalue of Vδ,R(χrp) thus gives an estimation of the normal direction of S at the point
p.

2.3 Stability of gradients of distance-like functions

We mention in this subsection an intermediary result, Corollary 2.1, that guarantees the L1-
stability of gradients of distance-like functions. It is a consequence of Theorem 3.5 of [6] which
gives the stability of gradients of convex functions. For any function f : Rd → Rk and any set
E of Rd, we put

‖f‖1,E =

∫
E

‖f(x)‖dx and ‖f‖∞,E = sup
x∈E
‖f(x)‖.

If E is rectifiable, we denote byHn(E) its n-dimensional Hausdorff measure. If f is differentiable
almost everywhere, one denotes ∇f(E) := {∇f(x), x ∈ E ∩ Ωf} where Ωf is the set of points
where f is differentiable. The diameter of a setX ⊂ Rd is given by diam(X) := supx,y∈X ‖x−y‖.
We first recall the following theorem.

Theorem 2.3 (Theorem 3.5 of [6]). Let E be an open subset of Rd with rectifiable boundary,
and f , g be two convex functions from E to R such that diam(∇f(E) ∪∇g(E)) ≤ D. Then

‖∇f −∇g‖1,E ≤ C2

(
Hd(E) + (D + ‖f − g‖

1
2

∞,E)Hd−1(∂E)
)
‖f − g‖

1
2

∞,E ,

where C2 is a constant that only depends on the dimension d.

Corollary 2.1. Let E be a set of Rd with rectifiable boundary and ε > 0. For any distance-like
functions δ and δ′ such that ‖δ − δ′‖∞,E ≤ ε, one has

‖nδ′ − nδ‖1,E ≤ C3 [Hd(E) + (2diam(E) + 4R+
√

2Rε) Hd−1(∂E)]
√

2Rε,

where R = max(‖δ‖∞,E , ‖δ′‖∞,E) and C3 is a constant depending only on d.

We introduce ψδ(x) = ‖x‖2− δ2(x) and ψδ′(x) = ‖x‖2− δ′2(x). For almost every x, one has

nδ′(x)− nδ(x) =
1

2
(∇δ′2(x)−∇δ2(x)) =

1

2
(∇ψδ(x)−∇ψδ′(x)).

Using the convexity of ψδ and ψδ′ and Theorem 2.3, Corollary 2.1 follows from the following
lemma.
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Lemma 2.2. Under the assumptions of Corollary 2.1, one has

(i) ∀x ∈ E, |ψδ(x)− ψδ′(x)| ≤ 2Rε

(ii) diam(∇ψδ(E) ∪∇ψδ′(E)) ≤ 2diam(E) + 4R.

Proof. For every point x in E, one has

|ψδ(x)− ψδ′(x)| = |δ2(x)− δ′2(x)|
= |δ(x)− δ′(x)| × |δ(x) + δ′(x)|
≤ 2Rε.

Let now X and X ′ be points in ∇ψδ(E) and ∇ψδ′(E) respectively. There exist x, x′ in E such
that X = 2x− 2δ(x)∇δ(x) and X ′ = 2x′ − 2δ′(x′)∇δ′(x′). Then

‖X −X ′|| ≤ ‖2x− 2x′‖+ ‖2δ′(x′)∇δ′(x′)− 2δ(x)∇δ(x)‖
≤ 2 diam(E) + 2R‖∇δ‖∞,E + 2R‖∇δ′‖∞,E
≤ 2 diam(E) + 4R.

In the last inequality, we used the fact that a distance-like function is 1-Lipschitz (see Propo-
sition 3.1 in [7]). The result still holds if X,X ′ both belong to ∇ψδ(E) or to ∇ψδ′(E).

2.4 Proof of Theorem 2.1

This proof follows the proof of the stability theorem in [13]. The idea is to compare the two
integrals on the common set E = KR−ε with ε = ‖δ − dK‖∞,E and to show that remaining

parts are negligible. By Proposition 4.2 of [6], the set ∂E is rectifiable. For every R ∈ R+,
we denote by N (∂K,R) the covering number of ∂K with a radius parameter R, namely the
minimal number of balls of radius R needed to cover ∂K. Let us first suppose that ε < R

2 . We
have

VdK ,R(χ) =

∫
E

ndK (x)⊗ ndK (x)χ(x− ndK (x))dx

+

∫
KR\E

ndK (x)⊗ ndK (x)χ(x− ndK (x))dx.

For every x ∈ KR, one has ‖ndK (x)‖ = ‖x−pK(x)‖ ≤ R. The fact that ‖χ‖∞ ≤ ‖χ‖BL implies∥∥∥∥VdK ,R(χ)−
∫
E

ndK (x)⊗ ndK (x)χ(x− ndK (x))dx

∥∥∥∥
op

≤ R2 · ‖χ‖BL · Hd(KR\KR−ε). (8)

We proceed similarly for the δ-VCM. By definition, we have ‖nδ(x)‖ = ‖δ(x)∇δ(x)‖ ≤ |δ(x)| ≤
R, since δ is 1-Lipschitz. Moreover, one has KR−ε ⊂ δR ⊂ KR+ε. Hence, the volume of
δR \KR−ε is less than the volume of KR+ε\KR−ε and∥∥∥∥Vδ,R(χ)−

∫
E

nδ(x)⊗ nδ(x)χ(x− nδ(x))dx

∥∥∥∥
op

≤ R2 · ‖χ‖BL · Hd(KR+ε\KR−ε). (9)
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We now bound the volume of KR+ε\KR−ε by using Proposition 4.2 of [6]. We set ωn(t) to be
the volume of the n-dimensional ball of radius t.

Hd(KR+ε\KR−ε) =

∫ R+ε

R−ε
Hd−1(∂Kt) dt

≤
∫ R+ε

R−ε
N (∂K, t)ωd−1(2t) dt

≤ N (∂K,R− ε)ωd−1(2(R+ ε))2ε

≤ 2 N (∂K,
R

2
)ωd−1(3R) ε. (10)

We now need to bound the operator norm of the integral
∫
E

[AdK (x)−Aδ(x)]dx, where

AdK (x) := ndK (x)⊗ ndK (x)χ(x− ndK (x)),

and Aδ is defined similarly. The difference of these two terms is decomposed as:

AdK (x)−Aδ(x) = χ(x− ndK (x))(ndK (x)⊗ ndK (x)− nδ(x)⊗ nδ(x))

+ [χ(x− ndK (x))− χ(x− nδ(x))]nδ(x)⊗ nδ(x)

From the facts that

‖ndK (x)⊗ ndK (x)− nδ(x)⊗ nδ(x)‖
≤ ‖ndK (x)⊗ (ndK (x)− nδ(x))‖+ ‖(nδ(x)− ndK (x))⊗ nδ(x)‖
≤ 2R ‖ndK (x)− nδ(x)‖,

and also

‖[χ(x− ndK (x))− χ(x− nδ(x))]nδ(x)⊗ nδ(x)‖ ≤ Lip(χ) ‖ndK (x)− nδ(x)‖ R2

one has
‖AdK (x)−Aδ(x)‖op ≤ ‖χ‖BL (R2 + 2R)‖ndK (x)− nδ(x)‖,

which by integration leads to∥∥∥∥∫
E

[AdK (x)−Aδ(x)]dx

∥∥∥∥
op

≤ ‖χ‖BL (R2 + 2R)‖ndK − nδ‖1,E .

Corollary 2.1 implies that the norm ‖ndK − nδ‖1,E is bounded by

C2 × [Hd(E) + (2diam(E) + 4R+
√

2Rε)×Hd−1(∂E)]×
√

2Rε.

Since diam(E) ≤ diam(K) + 2R and ε ≤ R
2 , the two last equations imply∥∥∥∥∫

E

[AdK (x)−Aδ(x)]dx

∥∥∥∥
op

(11)

≤ C2 ‖χ‖BL (R2 + 2R)[Hd(KR) + (2diam(K) + 9R)Hd−1(∂KR−ε)]
√

2R
√
ε.

Again by Proposition 4.2 of [6], we boundHd−1(∂KR−ε) byN (∂K, R2 )·ωd−1(3R). Furthermore,
since the diameter of KR is less than diam(K) + 2R, its volume Hd(KR) is bounded by a
constant involving diam(K), R and d. Remark that N (∂K, R2 ) is also bounded by a constant
depending on the same quantities. Hence, the constants involved in Equations (11) and (10)
also depend solely on diam(K), R and d. We conclude the proof of Theorem 2.1 by combining
(11) with (8) and (9).

The case where ε ≥ R
2 is trivial (and not interesting in practice) since both Vδ,R(χ) and

VdK ,R(χ) can be upper bounded by a quantity depending on diam(K), R and d, which can be
put into the constant C1 of the Theorem.
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Figure 2: Distance to a measure. We suppose here that the measure µ is supported on a
compact set K. The quantity δµ,m(x) is the minimal radius r such that B(x, r)∩K has a mass
m.

3 VCM using the distance to a measure

The distance to a measure is a distance-like function that is known to be resilient to outliers.
It is therefore natural to consider the δ-VCM in the particular case where δ is a distance to a
measure. First we recall the definition and some stability results of the distance to a measure.
Then we study the δ-VCM when δ is a distance to a measure.

3.1 Distance to a measure

The distance to a measure has been introduced in [7] and is defined for any probability measure
µ on Rd. We denote in the following supp(µ) the support of µ.

Definition 3.1. Let µ be a probability measure on Rd and m0 a regularization parameter in
(0, 1). The distance function to the measure µ is defined for every point x in Rd by

dµ,m0
(x) :=

(
1

m0

∫ m0

0

δ2
µ,m(x)dm

)1/2

, (12)

where δµ,m(x) = inf{r ≥ 0, µ(B(x, r)) ≥ m}.

The formula defining the function δµ,m mimics a similar formula for the distance function
to a set K: dK(x) = inf{r ≥ 0, K ∩ B(x, r) 6= ∅}, as shown on Figure 2. However it turns
out that the function δµ,m is not distance-like [7], while the regularization defined by Eq. (12)
is distance-like. Furthermore, the distance to the measure has been shown to be resilient to
outliers, and more precisely, Theorem 3.5 of [7] states that

‖dµ,m0
− dµ′,m0

‖∞ ≤
1
√
m0

W2(µ, µ′),

where W2 is the 2-Wasserstein distance between measures. For more details on Wasserstein
distances, which are also known under the name Earthmover distances in image retrieval and
computer science, one can refer to [15]. To give an intuition, when µK and µK′ are uniform
probability measures on two point clouds K and K ′ with the same number of points, the
distance W2(µK , µK′) is the square root of the cost of a least square assignment between K
and K ′.
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Figure 3: Level sets of distance functions of a noisy point cloud. From left to right: usual
distance function to the point cloud; k-distance; witnessed-k-distance; median-witnessed-k-
distance

Point cloud case Let P ⊂ Rd be a finite point set with n points, k ∈ (0, n) a real number
and m0 = k/n. Following [11], we call k-distance to P and denote dP,k the distance to the
measure for the uniform measure on P for the parameter m0. In the particular case where k is
an integer, a simple calculation [7] shows that for every point x in Rd,

d2
P,k(x) =

1

k

∑
pi∈NP,k(x)

‖x− pi‖2 ,

where NP,k(x) are the k nearest neighbors of x in P . Furthermore, the k-distance dP,k is a power
distance [11, Proposition 3.1]. More precisely, if we denote BaryP,k the set of isobarycenters of
k distinct points in P , one has

∀x ∈ Rd d2
P,k(x) = min

b∈BaryP,k

(
‖x− b‖2 + ωb

)
,

where the weight ωb = 1
k

∑
pi∈NP,k(b) ‖b − pi‖2. Figure 3 illustrates the stability of the k-

distance of a point cloud with respect to outliers. Remark that the level sets of the k-distance
(second picture), are much smoother and faithful than the level sets of the distance function
(first picture).

3.2 Stability

We state here a stability result obtained by combining our result with a stability result for the
distance to a measure established in [11]. Although this result can hold for measures supported
in Rd, we choose to state it for uniform measures on surfaces of R3, so as to give a better
intuition.

Let S be a two dimensional surface and µS denote the uniform probability measure on S.
An application of Günther-Bishop theorem which can be found explicitely on page 749 of [7] is
that there exists a constant αS > 0 such that

∀p ∈ S, ∀r ≤ diam(S), µS(B(p, r)) ≥ αSr2. (13)

Proposition 3.1. Let P be a point cloud of cardinal n, S a surface of R3 and let µP and µS be
the uniform probability measures on P and S respectively. If we define k = W2(µS , µP )

√
αSn,

then we have

‖VdP,k,R(χ)− VdS ,R(χ)‖op ≤ C4 α
−1/8
S ‖χ‖BL W2(µS , µP )

1
4 ,

where the constant C4 depends on diam(S) and R.
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Proof. Let k ∈ (0, n) and m0 = k/n. By Theorem 1 of [11] (Section 4.2), one has

‖dP,k − dK‖∞ ≤ m
− 1

2
0 W2(µS , µP ) + α

− 1
2

S m
1
2
0 .

The right hand-side is minimal when m0 satisfies m
− 1

2
0 W2(µS , µP ) = α

− 1
2

S m
1
2
0 , namely m0 =

W2(µS , µP )
√
αS . If k = W2(µS , µP )

√
αSn, the bound in the previous equation becomes

W2(µS , µP )
1
2α
−1/4
S . We conclude by Theorem 2.1.

Remark this result can be easily extended to any dimension d and also to the case where
S is a compact set with a dimension at most l (i.e. there exists a constant αS such that
µS(B(p, r)) ≥ αSrl).

4 Tractable variants for the dP,k-VCM

We have seen in the previous section that the dP,k-VCM is resilient to outliers. Unfortunately,
it is not practically computable, because the computation of the k-distance is not. We therefore
study in this section variants of the dP,k-VCM, by using variants of the k-distance. In Section
4.1, we propose an efficient relaxation of the dP,k-VCM for which we have a stability result. In
Section 4.2, we investigate another δ-VCM interesting for its resilience to outliers.

4.1 Witnessed-k-distance and dwP,k-VCM

Let P ⊂ Rd be a point cloud, k an integer. We have seen in the previous section that the
k-distance is a power distance on the set BaryP,k of k points of P . Lemma 2.1 then allows us
in theory to calculate the dP,k-VCM. Unfortunately, it is not computable in practice. The set
BaryP,k is indeed huge since its cardinal is of the order of

(
n
k

)
, if n is the cardinal of P . To

overcome this problem, we use the witnessed k-distance that was introduced in [11].

Relaxation with the witnessed k-distance A point is said to be a k witness of P if it is
the barycenter of k points p1, . . . , pk of P such that p2, . . . , pk are the (k−1)-nearest neighboors
of p1 in P \ {p1}. We denote by Baryw

P,k this set of points. The witnessed k-distance is then
defined as the following power distance

dw
P,k(x) :=

(
min

b∈Baryw
P,k

‖x− b‖2 + ωb

)1/2

,

where ωb = 1
k

∑
pi∈NP,k(b) ‖b− pi‖2. We then use Lemma 2.1 for the computation of its VCM.

Note that the number of cells in the power diagram is bounded by the number of points in P ,
and can therefore be computed efficiently using e.g. CGAL [1]. We also have a stability result.

Proposition 4.1. Let µS be the uniform measure on a surface S ⊂ R3 and µP denotes the
uniform probability measure on a point cloud P . Let k = W2(µP , µS)

√
αSn/4, where n is the

number of points of P . Then for any bounded Lipschitz function χ : Rd → R+

‖VdwP,k,R
(χ)− VS,R(χ)‖op ≤ C5 α

−1/8
S ‖χ‖BL W2(µP , µS)

1
4 ,

where the constant C5 depends on diam(S) and R.

The proof of this proposition is similar to the one of Proposition 3.1, and is using Theorem
4 of [11].
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4.2 Median-k-distance and dmP,k-VCM

We introduce here the median-k-distance which is a distance-like function derived from the
witnessed-k-distance. We do not have yet stability results for this function, but numerical
experiments in the next section show that the corresponding δ-VCM is very stable in practice
(see also the visual intuition given by Figure 2). Let P be a point cloud and k > 1 be an
integer. A point is said to be a median k-witness of P if it is the geometric median of k points
p1, . . . , pk of P such that p2, . . . , pk are the (k − 1)-nearest neightbors of p1 in P \ {p1}. We
denote by Barym

P,k this set of points.

Definition 4.1. The median-k-distance is the power distance defined by

dm
P,k(x) :=

(
min

b∈Barym
P,k

‖x− b‖2 + ωb

)1/2

,

where ωb = 1
k

∑
pi∈NP,k(b) ‖b− pi‖2.

The key idea is to replace the barycenter of k points involved in the witnessed-k-distance
by the geometric median. This can be seen as replacing the L2-norm by the L1-norm. Indeed,
it is well-known that the barycenter of p1, . . . , pk is the point b that minimizes

∑d
i=1 ‖b− pi‖2.

Similarly, a geometric median is a point b that minimizes
∑d
i=1 ‖b−pi‖. Note that the geometric

median is unique when the k points are not colinear.
As for the witnessed-k-distance, one can compute the dm

P,k-VCM by using Lemma 2.1.

5 Computation and Experiments

5.1 Computation of the VCM for a power distance

We describe here our algorithm to compute an approximation of the VCM of a power distance.
Let thus (P, ω) be a weighted point cloud that defines a distance-like function δP . For the
purpose of normal and curvature estimation, we have to compute for each point q in P the
covariance matrix VδP ,R(χrq), where χrq is the indicatrix of the ball B(q, r). Using Lemma 2.1,
we have

VδP ,R(χrq) =
∑

p∈P∩B(q,r)

Mp,

where the matrix Mp is defined by

Cp = PowP (p) ∩ B
(
p, (R2 − ωp)1/2

)
Mp =

∫
Cp

(x− p)⊗ (x− p)dx

The main difficulty is to compute these covariance matrices, and in practice we approach it by
replacing the ball in the definition of Cp by a convex polyhedron. The input of our algorithm
(summarized in Algorithm 1) is a weighted point cloud, a radius R and an approximation of
the unit ball by a convex polyhedron B. In all examples, the polyhedron B was a dodecahedron
circumscribed to the unit ball. To compute the approximate covariance matrices (MB

p )p∈P , we
first build the power diagram of the weighted point cloud. Then, we proceed in two steps for
each point:

12



shapes number of points dw
P,k-VCM dm

P,k-VCM

ellipsoid 10K 3.31 s 3.44 s
hand 36K 12.31s 13.86s
bimba 74K 25.98 s 29.08 s
ceasar 387K 175.16 s 201.20 s

Table 1: Computation times of (MB
p )p∈P for the dw

P,k-VCM and the dm
P,k-VCM (with a 4 ×

2.5Ghz CPU)

5.1.1 Intersection

We compute an approximation of the cell Cp by

CBp := PowP (p) ∩ (p+ (R2 − ωp)1/2B) (14)

To perform this computation, we gather the half-spaces defining both polyhedra and we compute
their intersection. By duality, this is equivalent to the computation of a convex hull.

5.1.2 Integration

The boundary of the polyhedron CBp is decomposed as a union of triangles, and we consider

the tetrahedron ∆1
p, . . . ,∆

kp
p joining these triangles to the centroid of Cp. We compute

MB
p =

∫
CB

p

(x− p)⊗ (x− p)dx (15)

by summing the signed contribution of each tetrahedron, which can be evaluated exactly using
the same formulas as in [2]. We implemented this algorithm using CGAL [1] for the power
diagram calculation and the intersection step. We report in Table 1 some running times for the
witnessed-k-distance and the median-k-distance.

Algorithm 1 Computation of VδP ,R.

Require: P ⊆ Rd point cloud, R > 0, B = approximation of B(0, 1)
Computation of the power diagram (PowP (p))p∈P
for all p ∈ P do
CBp ← PowP (p) ∩ (p+ (R2 − ωp)1/2B) {§5.1.1}
∆1
p, . . . ,∆

kp
p ← decomposition of CBp into tetrahedra {§5.1.2}

MB
p ←

∑kp
i=1

∫
∆i

p
(x− p)⊗ (x− p)dx {§5.1.2}

end for
return (MB

p )p∈P .

5.2 dwP,k-VCM evaluation

We show in this section that the dw
P,k-VCM provides in practice a robust estimator for normal

vectors and curvatures, as well as for feature detection. It is also resilient to both Hausdorff
noise and outliers. Note that in our experiments, the point cloud P is the set of vertices of
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a mesh. The mesh itself is only used for visualisation, our algorithm being only based on the
point cloud P . The diameter of the point cloud in all our examples is D = 2. We say that the
Hausdorff noise is ε if every point p of P can be randomly moved at a distance less than ε. We
will speak about outliers if in addition a certain amount of points can be moved much further.

5.2.1 Normal estimation

As suggested by Remark 2, we define a normal at each point p of a point cloud P as the
eigenvector associated to the largest eigenvalue of VδP ,R(χrp).
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VCM R = 0.1, r = 0.2

VCM, R = 0.1, r = 0.1

dw
P,k-VCM R = 0.1, r = 0.2, k = 30

dw
P,k-VCM R = 0.1, r = 0.1, k = 30

Jet fitting k = 50

Jet fitting k = 80

Hough Transform k = 400

Hough Transform k = 700

Figure 4: Ellipsoid normal estimation. Left: the rendering illustrates the quality of the normal
estimation (parameters: k = 30, R = 0.2D, r = 0.2D, Hausdorff noise = 0.4D), where D is
the diameter of the original shape. Right: Comparison of the average normal deviation for
Jet Fitting, VCM, dw

P,k-VCM and the Randomized Hough Transform method [4] for different
values of Hausdorff noise.

Comparison with other methods We compare the accuracy of our method to the VCM
method [13], to the Jet Fitting method [5] and to the Randomized Hough Transform method[4].
Figure 4 displays the average angular deviation between the estimated normal and the ground
truth in the case of a noisy ellipsoid with outliers. Our method gives better result than the
others.

Sensitivity to parameters To measure the dependence of our method on the different
parameters, we computed the average deviation of the normal on a noisy ellipsoid for different
choices of parameters k and R. As can be seen in Figures 5 and 6, the results are essentially
stable. Figure 5 shows that we should choose k larger when the noise is large. We observe that
the value k = 30 gives good results in both presence and absence of noise. Therefore all our
experiments (except of course the ones of Figure 5) are done with the value k = 30. Note that
the classical VCM method coincides exactly with the dw

P,k-VCM method when k = 1.

Visualisation of normal estimation We test the quality of our normal estimator on stan-
dard shapes, by rendering meshes according to their estimated normals. In Figure 7, we notice
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Figure 5: Dependence on the parameter k: we see the influence of the parameter k (in abscissa)
on the average error on the normal estimation using dw

P,k-VCM. The experiment is done for
different values of r and R and for two different noisy ellipsoids. Left: Hausdorff noise = 0.2D.
Right: Hausdorff noise = 0.4D, where D is the diameter of the original shape.

Figure 6: Dependence on the parameter R: we see the influence of the parameter R (in abscissa)
on the average error on the normal estimation using dw

P,k-VCM. The experiment is done for
different values of r and for two different noisy ellipsoids. Left: Hausdorff noise = 0.2D. Right:
Hausdorff noise = 0.4D, where D is the diameter of the original shape.

that the rendering done with normals computed with our method is much better than the ren-
dering done with normals induced by the geometry of the underlying mesh, at the same time
robust to noise while keeping intact significant features. In Figure 8, we compare this rendering
with the rendering obtained when the normal is calculated by the Randomized Hough Trans-
form method [4], which is a statistic method known to be resilient to noise and outliers. Our
method achieves a much smoother rendering.
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Figure 7: Rendering of “caesar” data of diameter D using triangle normal (top row) and
estimated dw

P,k-VCM normal (bottom row) with Phong shading (parameters R = 0.04D, r =
0.04D, k = 30). From left to right, the Hausdorff noise is 0.02D, 0.04D and 0.06D.

Figure 8: Rendering comparison of “hand” data: (left) using our dw
P,k-VCM normal estimation

with parameters R = 0.04D, r = 0.02D, k = 30 (D is the diameter of the original shape), and
(right) the Randomized Hough Transform method [4] with standard parameters: neighbors
number = 500 and the others equal to default values. Triangles are displayed with Phong
shading and “hand” is perturbated by a Hausdorff noise equal to 0.04D.
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5.2.2 Estimation of curvatures and features detection

The covariance matrix also carries curvature information along other eigendirections [13]. We
denote by λ0 ≥ λ1 ≥ λ2 the three eigenvalues of VδP ,R(χrp) at a point p. Up to a multiplicative
constant, λ1 and λ2 correspond to the absolute value of the minimal and maximal curvatures
respectively [13]. We call the corresponding eigenvectors respectively minimal and maximal
principal directions.

We compare our method with the Jet Fitting method [5] in Figure 9. Experiments have
been done for a large choice of different parameters, and we find better principal directions
with our method. In the presence of many outliers, we plot in Figure 10 the minimal principal
direction estimation of dw

P,k-VCM projected on the initial mesh.

Figure 9: Principal direction estimation on Bimba datas of dimeter D (no noise). We put a
line-segment aligned at every point to the minimal principal direction. Left: Jet-fitting method
(with a polynomial of degree 4 × 4 and k = 100 neighbors for each point). Right: dw

P,k-VCM
method (parameters R = 0.04D, r = 0.08D, k = 30)

To illustrate the performance of curvature estimation by dw
P,k-VCM, the estimated mean

absolute curvature λ1+λ2 is displayed for the standard “caesar” and “hand” models (Figures 11
and 12). On Figure 11, we also render the triangulation before any processing to better illustrate
the amplitude of noise.

We also detect sharp features, using the same criteria as in [13]: we say that a point p
belongs to a sharp feature if λ1/(λ0 + λ1 + λ2) ≥ T , for a given threshold T . Figure 13 shows
that the dw

P,k-VCM robustly detect features (with T = 0.1, corresponding to an angle of ≈ 25◦).

5.3 Comparison with the dmP,k-VCM

Figures 14 and 15 indicate empirically that the dm
P,k-VCM gives a slightly better estimation of

the normal vector and absolute mean curvature than the dm
P,k-VCM in the presence of outliers.
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Input 1 Inout 2 Input 3

dw
P,k-VCM dw

P,k-VCM dw
P,k-VCM

dm
P,k-VCM dm

P,k-VCM dm
P,k-VCM

VCM VCM VCM

Figure 13: Edge detection on a noisy fandisk of diameter D (99% of the points are moved at a
distance at most 0.02D (Input 1), 0.035D (Input 2) or 0.05D (Input 3), 1% are outliers) with
dw
P,k-VCM and parameters R = 0.06, r = 0.02, k = 30).
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dw
P,k-VCM dm

P,k-VCM dw
P,k-VCM dm

P,k-VCM

Figure 14: Comparison between dw
P,k-VCM and dm

P,k-VCM (for the same parameters R = 0.04D,
r = 0.02D, k = 30 where D is the diameter of the original shape). Input datas contain outliers
(99.9% of the points are moved at a distance at most 0.1D and 0.1% are moved at a distance
between 0.1D and 1D). Rendering illustrates the normal estimation quality on the ellipsoid
data. The mean absolute curvature is displayed on the “hand” model.
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Figure 15: Comparison between dw
P,k-VCM and dm

P,k-VCM (for the same parameters R = 0.1D,
r = 0.1D, k = 30, where D is the diameter of the original shape). Hausdorff noise is 0.2D. The
percentage of “outliers” corresponds to the percentage of points that have been moved at a
distance in-between 0.05D and 0.1D. Left: input mesh with 50% of outliers. Right: evolution
of the angle error when the proportion of outliers increases.
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