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Abstract. Computing differential quantities or solving partial deriva-
tive equations on discrete surfaces is at the core of many geometry pro-
cessing and simulation tasks. For digital surfaces in Z

3 (boundary of
voxels), several challenges arise when trying to define a discrete calculus
framework on such surfaces mimicking the continuous one: the vertex
positions and the geometry of faces do not capture well the geometry of
the underlying smooth Euclidean object, even when refined asymptoti-
cally. Furthermore, the surface may not be a combinatorial 2-manifold
even for discretizations of smooth regular shape. In this paper, we adapt
a discrete differential calculus defined on polygonal meshes to the specific
case of digital surfaces. We show that this discrete differential calculus
accurately mimics the continuous calculus operating on the underlying
smooth object, through several experiments: convergence of gradient and
weak Laplace operators, spectral analysis and geodesic computations,
mean curvature approximation and tolerance to non-manifold locii.
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1 Introduction

In many geometry processing and simulation applications, solving variational
problems or simulating partial differential equations on the object boundary can
be a critical step. Involved shapes are generally represented as discrete meshes. It
is thus necessary to have a calculus that operates consistently and accurately on
these discrete objects. For embedded graphs or triangular manifold meshes, finite
element methods [1,2] or discrete exterior calculus (DEC) [7,8] have played a
crucial role in many applied mathematics and geometry processing applications.
From a broad perspective, such models provide consistent differential operators
to process scalar, vector or tensor functions on meshes or embedded graphs
(consistency given by satisfying Stokes’ theorem for all discrete elements). These
frameworks induce several convergence results for PDE solutions, but with strong
hypotheses on the discrete-continuous mapping [10]. On generic non-triangular
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meshes, Virtual Element Methods [20], or ad hoc operators exist [6]. However,
these models assume a Euclidean embedding interpolating the smooth manifold.

Digital objects and surfaces corresponds to discrete approximation of con-
tinuous objects through a discretization process [11], or to partitions in images.
In terms of perturbation and stability, digital surfaces, made of isothetic unit
squares in Z

3, are very specific: vertices do not interpolate the continuous ob-
ject, and geometric normals poorly approximate the continuous normal bundle.
Even worse, the primal quad surface may not be a combinatorial 2-manifold.
To design stable geometric estimators, a key ingredient is the digitization grid
step h used to represent objects. Hence, a multigrid process, as a function of h,
can be designed to relate a digital surface to the underlying smooth surface [14].
Stable geometric estimators with convergence properties can then be obtained
(i.e. the estimation converges to the expected one on the smooth manifold as h
tends to zero) for various quantities: surface area [14], curvature tensor [12], or
even higher order functional such as the Laplace-Beltrami operator [3].

A combinatorial DEC can be constructed on digital surfaces, but their specific
geometry makes it poorly reflects the continuous calculus. This article presents
a new discrete calculus framework dedicated to digital surfaces, which relies on
two ingredients: (i) a convergent normal vector field u (e.g. the integral invariant
normal estimator [12]), which is used to correct the embedding of (ii) a polygo-

nal differential calculus model of de Goes et al. [6]. Several methods exploits this
idea of correcting the embedding with a normal vector field [14,3,13]. Mercat
[16] follows this idea with a theory of conformal parametrization and differen-
tial operators for digital surfaces restricted to combinatorial 2-manifolds. Our
proposal shares some ideas with these works and defines a calculus on generic
digital surfaces with a simple per-face construction of the operators.

The paper is organized as follows. We first describe the operator construction
from [6] (§2). §3 describes how to correct the geometrical embedding of the sur-
face elements. Finally, we evaluate the performance of the framework on various
variational problems (§4).

2 Polygonal differential calculus

We focus here on the formulation proposed by de Goes et al. for polygonal
surfaces embedded in R

3 [6]. It defines differential operators per face without
assumption on the face geometry, which could be non-convex or even non-planar.

Let M be a mesh with vertices X and faces F. For a given face f with nf

vertices, we denote by Xf , the vertex positions encoded as a nf × 3 matrix (the
i-th row corresponds to the position of the vertex i of the face f). In this calculus,
we consider scalar functions φ defined on vertices of M (see Figure 1−(a−b)). For
the face f , we denote by φf the restriction of φ to the face vertices, represented
as a vector of size nf . As all discrete differential estimators will be linear in the
vertex positions and the scalar function values defined at vertices, the matrix
representation will easily combine operators with matrix products. For instance,
the centroid of a face is given by cf := 1

nf
Xt

f1f , with 1f = (1 . . . 1)t of size nf .
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First per face local operators are constructed, starting from the gradient.
To cope with (non-planar) polygonal faces, the weak form of the gradient is
sought (i.e.

∫
f
∇φ(x)dx in the continuous setting) leading to a constant gradient

integrated per face. Solving the integral on the discrete structure would require
an interpolation scheme on the non-planar face. The key ingredient is to focus
on the co-gradient ∇φ⊥ that leads to a simpler expression of its weak form using
Stoke’s theorem: ∫

f

∇φ⊥(x)dx =

∮
∂f

φ(x)t(x)dx ,

t(x) being the unit tangent vector at x ∈ ∂f . When discretizing this form for a
polygonal face f , t(x) corresponds to the (normalized) edge vectors. Now, let us
consider a linear function φf = Xfs+1fr with s ∈ R

s and r ∈ R, integrating φf
on an edge correspond to averaging the function value at the endpoints. Hence,
the discrete operator for the (integrated) co-gradient is the 3× nf matrix

G⊥
f := Et

fAf ,

Ef being the matrix encoding the face edges, and Af the operator that averages
two consecutive vertex values. To be explicit, Af is the nf × nf matrix with
Ai,i = 1/2,Ai,i+1 = 1/2 (zero otherwise), and Df denotes the nf×nf derivative
matrix with Di,i = −1,Di,i+1 = 1 (zero otherwise). So Ef = DfXf .

Given a vector φf , Et
fAfφf is a vector of size 3 corresponding to the Eu-

clidean embedding of the integrated co-gradient of φf on f . For a polygonal face
f , the vector area af can be defined as [17]: af := 1

2

∑
vi∈f xvi

× xvi+1
.

The normal vector to f is simply nf := af/af , with af := ‖af‖2. Now, we
can finally get the expression of the gradient as ∇φ⊥ = [n(x)]∇φ, where [n] is
the π/2 rotation matrix such that [n]q = n× q for any 3d vector q:

Gf :=
1

af
[nf ]E

t
fAf .

The gradient operator is a 3 × nf matrix outputting a 3d vector in 3d when
applied to a scalar vector φf (see Figure 1-(c)). Following such per-face con-
struction, de Goes et al. define several differential operators listed in Table 1
and represented as matrices acting on scalar functions, vectors, or discrete dif-
ferential forms (see [7,8] for an introduction). We do not discuss the rationale
and the construction of each operator, please refer to [6] for details.

We conclude with the presentation of the Laplace-Beltrami operator ∆, a
fundamental tool in many geometry processing applications [15]. To solve global
PDE involving this operator (e.g. for instance solving a Laplace or Poisson prob-
lem ∆u = f), it is interesting to aggregate the per-face operators into a global
operator L. We simply sum up the Lf matrices with a global indexing of the
vertices. As every Lf matrix is negative semi-definite, so is the global Laplace-
Beltrami operator. Furthermore, the global operator is very sparse. In opposition
with [6], we define it with a negative sign, since usually both the Laplacian and
the Laplace-Beltrami are negative operators (with negative eigenvalues).
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Fig. 1. Illustration of a non-planar face f (a) equipped with a vertex valued scalar
function φf (b), and the co-gradient and gradient vectors of φf (c)

We do not go further into the details of this approach, several results are given
in [6] to justify the construction of these operators. For short, they match with
classical discrete exterior calculus or finite element ones for triangular meshes [7],
and for the polygonal case, they resemble to Virtuel Element Methods operators
for 2d structures embedded in R

3 [19]. However, all these relationships between
discrete calculus operators and their continuous counterpart on the smooth ob-
ject only make sense when the discrete structure interpolates the smooth object,
with a close normal vector field. Applying this calculus as is on digital surfaces
provide poor results. We need to adapt the surface embedding to correct it.

Operator Size Description

Vf := Ef (I3×3 − nfn
t
f ) nf × 3 flat operator that maps a vector to a 1-form.

Uf := 1

af
[nf ](B

t
f − cf1

t
f ) 3× nf sharp operator that maps a 1-form to a 3d vector.

Pf := Inf×nf
−VfUf nf × nf projection operator acting on a 1-form.

M
0

f :=
af

nf
Inf×nf

nf × nf inner product for discrete 0-forms (functions).

M
1

f := afU
t
fUf + λPt

fPf nf × nf inner product for discrete 1-forms (for some λ > 0).
Divf := −D

t
fM

1

f nf × nf integrated divergence operator from a 1-form.
Lf := −D

t
fM

1

fDf nf × nf weak Laplace-Beltrami operator.

Table 1. Summary of local per-face operators of polygonal calculus [6].

3 Projected digital surface embedding

As discussed in the introduction, the classical approach is to relate a digital ob-
ject to its continuous counterpart through the Gauss digitization process [11]. In
this setting, many multigrid convergence results have been obtained for various
integral and differential quantities such as the length in 2d [4], the surface area in
3d [14], the curvature tensor [12], or the Laplace-Beltrami operator [3]. Among
these techniques, the convergent estimation of the normal vector bundle is the
cornerstone of many followup results (e.g. [14,3]).
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Fig. 2. Input digital surface (left), its estimated normal vectors using [12] (middle),
projections of the face vertices onto their respective estimated tangent plane (right).

In the polygonal calculus described above, a key ingredient is that operators
are first defined per-face, and later summed up globally with the vertex indexing.
This suggests that correcting the embedding of the face vertices during the local
construction of the operators would lead to globally corrected operators. As a
first-order approximation, we propose to define our projected polygonal calculus

by relying on an external estimation of the face tangent space, and by (implic-
itly) projecting each face vertex onto this tangent plane when constructing the
operators. The idea of incorporating external normal vectors to correct the em-
bedding of a discrete structure follows the idea of Lachaud et al [13]. Let {uf}
be a normal vector field estimated on the digital surface, for instance using the
multigrid convergent approach of [12].

Definition 1 (Embedding operator). The per-face f projection operator onto

the tangent plane orthogonal to uf passing through the origin is the 3×3 matrix

Πf := (I3×3 − ufu
t
f ). Recalling that Xf is the nf × 3 matrix of the vertices

position of the face f , the new positions are given by X∗
f := XfΠf .

Note that the intercept does not need to be specified as all differential oper-
ators are invariant by translation. For illustration purpose, projected faces have
been translated to keep their centroid invariant in Figure 2, but this is meaning-
less in the calculus. Another observation is that for a given vertex v in M, its
embedding generally differs for its adjacent faces. This follows from the per-face
construction of the operators. The global continuity of scalar functions, or their
processing (i.e their Laplacian) comes from the global indexing of vertices, and
global operators as defined above.

4 Experiments

We demonstrate the interest of the projected calculus model for the processing
of scalar functions on digital surfaces. More precisely, we first evaluate the rele-
vance of the new embedding for the gradient computation of a scalar function.
Next, we study the Laplace-Beltrami operator and more advanced processing.
All operators are implemented in C++ and available in DGtal [18].
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Gradient of scalar functions. To evaluate the relevance of including external
tangent information in the calculus, let us consider the simple case of the gradient
evaluation on a quadratic scalar field defined on a tilted digital plane (with
normal vector 1/3 · (

√
3,
√
3,
√
3)t, Fig. 3). In a multigrid setting, we compute

the per-face gradient of the scalar function (Euclidean distance in ambient space
with respect to the plane center, Fig. 3-(a)), and we compare the expected
gradient vector direction (Fig. 3-(b)), to the estimated gradient using the classical
polygonal calculus (Fig. 3-(c)), and the projected one (Fig. 3-(d)). Gradient
vectors are illustrated from their projection onto the Euclidean plane. The error
metric used here is the l2 norm of the difference between estimated and expected
normalized gradient vectors. Figures 3-(e) and (f) detail relative errors. In Figure
3-(g), we have considered a decreasing grid step h from 1 to 1.5 × 10−2 (3 748
021 faces), demonstrating multigrid convergence of the gradient direction for the
projected calculus.

(a) (b) (c) (d)

(e) (f)
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Fig. 3. Convergence of the gradient operator: Input scalar function on a tilted plane
(a), expected normalized gradient projected onto the Euclidean plane (b), gradient
vectors using the original polygonal calculus with many aliasing artifacts (c), gradient
vectors using the projected calculus (d). Figures (e) and (f) details relative errors of
gradient estimations (values respectively in [0, 0.28] and [0, 0.62]), and (g) illustrates l2
norm of the error when decreasing the grid step h (from right to left).

Laplacian of a function. First, let us consider an evaluation of the output
of the Laplace-Beltrami function on analytical functions on a domain for which
we already know the expected Laplacian of that function. Following the setting
in [3], we evaluate L on a digital sphere with the simple quadratic function
φ(x) := x2

x on its boundary, and expect ∆φ(x) = 2− 6 cos2(ψ)2(1− cos(θ)2) in
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spherical coordinates. Note that Caissard et al. [3] achieve strong consistency of
the operator (i.e. pointwise convergence of the Laplacian values) at the price of
a convolution process on the surface elements, leading to a quadratic algorithm
for the operator construction, and a non-sparse operator. Clearly it is unlikely
that the purely local construction of our projected polygonal calculus provides
pointwise convergence. We observe nevertheless that the projection process offers
reasonable estimations while being purely local (see Figure 4).

(a) (b) (c) (d) (e)

(f)
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Fig. 4. Given a function φ(x) in (a) and its analytical Laplacian (b), we illustrate the
result of the pointwise convergence heat kernel based Laplace-Beltrami operator [3] in
(c). In (d) we have the results of the original local polygonal calculus operator, and in
(e) the result of our projected one. In (f) we have performed a multigrid convergence
test with decreasing gridstep h. Dashed lines correspond to the maximum absolute
error when estimating ∆f , the solid ones correspond to mean absolute errors.

Spectral analysis. We evaluate the stability of the spectrum of the pointwise
Laplace-Beltrami operator (M0)−1L. Eigenvalues and eigenvectors have a fun-
damental role in many geometry processing applications [15] as they define a
(spectral) basis to represent scalar functions on surfaces. Figure 5 compares the
first eigenvectors (corresponding to the largest eigenvalues) of the original polyg-
onal calculus Laplace-Beltrami operator, to the ones we propose. Our embedding
operator has a clear positive impact on the smoothness of basis functions.
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Fig. 5. First ten eigenvectors of the Laplace-Betrami operator on a digital sphere (and
their projection onto the Euclidean sphere): top two rows correspond to the original
polygonal calculus, bottom two rows correspond to the projected polygonal calculus we
propose (note that due to proximity of eigenvalues and numerical issues, eigenvectors
may not appear in the exact same order).

Mean curvature estimation. A well-known result related to the Laplace-
Beltrami operator is that, if x is the function associating to any point of M
its coordinates, then ∆x = 2H(x)n(x) with H(x) the mean curvature at x and
n(x) the normal to M. We check this method for computing the mean curvature
with our calculus. We compute the pointwise Laplace-Beltrami of coordinates
functions (X,Y, Z) = x and deduce the mean curvature H by scalar product
with the estimated normal u. Otherwise said, the estimated curvature Ĥ is

Ĥ =
1

2
(M0)−1

[

LX LY LZ
]

ut,

where u is a nf × 3 matrix storing per row the corrected normal to the vertex.
To account for the fact that the Laplace-Beltrami is only weakly convergent, we
can diffuse for a short time the result to simulate a local integration. Figure 6
illustrates this method for approximating the mean curvature, and also confirms
that the calculus must be corrected to get meaningful result.

Geodesic distance estimation. To evaluate the proposed calculus on a more
complex example, let us consider the geodesic distance estimation problem on
digital surfaces. We consider the PDE approach of Crane et al. [5] that uses
heat diffusion to estimate the geodesic distance function from sources. Sources
are defined via a characteristic function u0 in the domain. The heat method
consists in three steps: (i) integrate the heat flow u̇ = ∆u for some fixed time
t with initial condition u(x, 0) = u0(x), (ii) normalize the gradient vector field
d := −∇ut/‖∇ut‖2, and (iii) solve the Poisson equation ∆φ = ∇ · d (∇· denotes
the divergence operator on vector fields). The scalar function φ −minx(φ) is a
good approximation of the geodesic distance from the sources to any point [5].
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Goursat polynomial surface, digitized at gridstep h = 0.25

Smooth surface Naive calculus Projected calculus

True H Pointwise Ĥ Diffused Ĥ Pointwise Ĥ Diffused Ĥ

‖H − Ĥ‖2 0.059 0.051 0.025 0.003

‖H − Ĥ‖∞ 0.197 0.146 0.155 0.022

Fig. 6. Approximation of mean curvature H with Laplace-Beltrami operator. For the
computation of the diffused approximation Ĥ, the diffusion time t is set to 0.04 < 1

6
h,

so very short. The projected calculus uses integral invariant normal estimator (default
parameter r = 3h1/2). Projected calculus results are more accurate and stable.

In our discrete calculus framework, the heat diffusion step (i) is obtained
with a single backward Euler step for timestep t solving

(ut − u0)/t = (M0)−1Lut or more simply (M0 − tL)ut = M0u0 ,

which involves the global mass matrix M0 and the weak Laplace-Beltrami L.

Then, denoting w the solution ut, step (ii) computes per-face the normalized
opposite gradient df of wf for face f as df := −Gfwf/‖Gfwf‖2. Bringing back
this vector to a one-form with flat operator Vf , the per-face weak divergence
is then δf := DivfVfdf . Vector δf is a nf × 1 vector associated to face f ,
assigning values to each vertex of f . The global divergence map δ simply consists
in summing up per vertex the divergence contribution of each face.

Finally, step (iii) computes the geodesic distance function φ by solving the
Poisson linear system Lφ = δ, which must be shifted by −minx(φ) so that the
result starts from distance 0.

Figure 7 illustrates geodesic distance computations on a digitized sphere,
both with naive calculus and projected calculus (we use integral invariant normal
estimations with default parameters). As shown by projecting back distances on
the true smooth surface, the projected calculus builds more isotropic isodistance
lines while being much more numerically accurate.

Distances on surfaces with boundaries. If the digital surface has bound-
aries, then the heat diffusion as it is written follows Neumann boundary condi-
tions: the Laplace-Beltrami operator L is built per-face and ignores boundaries.
Isodistance lines will tend to be orthogonal to boundaries (see Figure 8 for an
example on a half-sphere). As suggested in [5], we compute a second diffusion in
step (i) that assumes Dirichlet zero boundary conditions on the digital surface
boundaries. This is done by restricting the linear system (M0−tL)ut = M0u0 to
non-boundary vertices, simply by assuming value 0 for u on boundary vertices.
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Sphere of radius 1, digitized at gridstep h = 0.125
distance on digitized surface distance projected on smooth surface
front view back view front view back view
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Fig. 7. Distance computation to a source point with geodesic in heat method on a
digital sphere. Scale is deep blue (0) to red (max distance) with black isolines every 0.1
and red isolines every 1. The expected max distance is π. Top row displays distances
computed with naive polygonal calculus. Bottom row displays distances computed
with projected calculus with normals u estimated with integral invariant method. All
computations made with parameter λ = 0.25 and heat diffusion time t = h2.

We then average the two solutions to define the vector w that is given to step
(ii) of the heat method. Figure 8 confirms the soundness of this approach.

Processing on non-manifold surfaces. Since every calculus operator is de-
fined per-face, they are quite oblivious to non-manifold edges and vertices of the
digital surface. We illustrate this fact on Figure 9 by computing the geodesic
distance to a source point on a digital surface approximating the triple junction
of three planes. Not a single line of code is changed.

5 Conclusion

Our contribution is a simple and easily implementable discrete differential calcu-
lus for the processing of scalar functions on digital surfaces. It relies on changing
the natural embedding of the digital surface when constructing per face differen-
tial operators, with the use of an external, multigrid convergent, normal vector
estimation. Many experiments back up the effectiveness of this new calculus.

Although we demonstrate its interest to solve integrated problems such as
Poisson problem (and the geodesic distance estimation is a perfect example of
this class), the proposed local construction does not achieve pointwise conver-
gence for second order operators like the Laplace-Beltrami one. Interesting chal-
lenges include the design of nonlocal operators, similarly to [3] or [9], or the use
of higher order embeddings for the digital surface.
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Half-sphere of radius 1, digitized at gridstep h = 0.05

distance on digitized surface distance projected on smooth surface

Solely Neumann
b. c.

Mixed Neumann
and Dirichlet b. c.

Solely Neumann
b. c.

Mixed Neumann
and Dirichlet b. c.

Fig. 8. Distance computation to a source point with geodesic in heat method on a
digital surface with boundaries (here a half-sphere). Results are more accurate when
mixing two heat diffusion solutions, one with Neumann boundary conditions, one with
Dirichlet boundary conditions.

Fig. 9. Geodesic distance computation on non-manifold surfaces: the projected calculus
is quite oblivious to non-manifold parts of the surface, as illustrated on this triple
junction surface, digitized coarsely at h = 1 (left) and finely at h = 0.125 (right).
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