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1 SHORT DESCRIPTION OF OUR SHROUDS IMPLEMENTATION

We present briefly our implementation of the “Shrouds” method [1], since no code was publicly available. First, the method
is presented in a rather informal manner, but digital topology results [2], [3] back up the fact that their 4∗-network obtained
by slicing is a separating manifold: it is indeed the (bel) adjacency graph of the digital surface that borders the set of
voxels, for some choices of connectivity between voxels. Second, the problem of minimizing the squared curvature under
hard constraint is not convex and one must be careful at how to process in its numerical approximation. Then the paper
is rather unclear at how each individual contour is optimized (according to either squared curvature or just second order
penalty), with either “a parametric quadratic polynomial” joining previous and next vertices or “a cubic spline [ . . . ] at
some additional computational cost”. Note that the first approach does not work out as is since it puts each vertex on the
line segment joining its two neighbors and the process does not converge. Last, the paper does not say how results on
different slices are combined.

Our approach is to optimize each vertex along its two intersecting slices. The process alternates a step where we
compute the distance between vertices along slices (i.e. estimation of a correct parameterization), and a step where each
vertex is moved along its edge in order to minimize the local squared curvature along both slices. More precisely, for some
vertex vi along some slice, let (xi, yi) be its 2D coordinates. This vertex is forced to stay on a unit edge between an inner
voxel pi and an outer voxel qi, so we associate a parameter ti ∈ [ε, 1− ε] to this vertex, and (xi, yi) = (1− ti)pi + tiqi.

Euler-Lagrange equations for minimizing squared curvature give the following necessary conditions at equilibrium
(using prime to denote the derivation with respect to a parameterization t of contour (x(t), y(t)) :

0 =24x′3x′′3y′ + x′′′(−13x′4x′′y′ − 14x′2x′′y′3 − x′′y′5)

+ x′′′′(x′5y′ + 2x′3y′3 + x′y′5)

+ y′′′(8x′5x′′ + 4x′3x′′y′2 − 4x′x′′y′4)

+ y′′(12x′4y′y′′′ + 12x′2y′3y′′′ − 24x′4x′′2 + 5x′5x′′′)

+ y′′(51x′2x′′2y′2 − 2x′3x′′′y′2 + 3x′′2y′4 − 7x′x′′′y′4)

+ y′′2(−54x′3x′′y′ + 18x′x′′y′3)

+ y′′3(3x′4 − 21x′2y′2)

+ y′′′′(−x′6 − 2x′4y′2 − x′2y′4)

At any vertex, either xi or yi is fixed and does not depend on ti. For instance, if we assume xi is fixed, the two first lines
do not depend on ti. For y′′′ we use the approximation at preceding time step. x′ and y′ are estimated with centered finite
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difference so do not depend on ti. Terms y′′2 and y′′3 are linearized as y′′y′′old and y′′y′′2old. Term y′′′′ is approximated with
centered finite difference with again the unknwon y′′ and y′′old at next and previous positions. Gathering all, we get an
expression of the form αiy

′′
i = βi for each direction, that we sum. Finally, term y′′i is approximated with centered finite

differences so that optimal parameter ti for yi is found.
Since the energy is not convex, we perform a damped gradient descent and we stop after 1000 iterations. Although this

algorithm generally does not converge (displacement norm stays greater than 0.01), it gives nice results visually.

2 EXPERIMENTAL STABILITY OF THE REGULARIZATION

First of all, we illustrate the robustness to noise of our approach. In Figure 1, we have added random perturbations of
different magnitude to the normal vectors used in (a). For some extreme noise (0.5 and 0.8 shifts), the geometry is highly
distorted but the overall shape is still consistent. For application specific regularization, adjusting the alignment term
coefficient β can handle such high noise levels. (Fig. 1, last row).

(a) (b) (c) (d)

Fig. 1. Stability with respect to noise in the input normal vector field (403 shape, same α, β and γ parameters): (a) the regularization with the input
normal vector field from [4], (b) random shifts ε with ‖ε‖ < 0.2 (up to 11◦ ), (c) with ‖ε‖ < 0.5 (up to 26.5◦ ), and (d) with ‖ε‖ < 0.8 (up to 38.7◦).
For the second row, we have used the default parameters (α = 10−3, β = 1, γ = 10−1). For the third row, we have reduced the alignment term
(β = 10−1) to handle the strong noise (only for (c) and (d)).

On the same binary shape, we have performed several regularizations with various input normal vector field estimators
in Figure 2. We have tested and compared the results obtained with: (a) a trivial estimator (unit vectors perpendicular to
the isothetic input quads), (b) the estimator described in [5] based in Integral Invariants, and two anisotropic estimators: (c)
[6] and (d) [4]. Since the last two ones [4], [6] preserve sharp features in the normal field, these features are clearly visible
in the corresponding regularizations.

(a) (b) (c) (d) (e)

Fig. 2. Regularization for various normal vector estimators: (a) trivial normal vectors, (b) isotropic integral invariant estimator [5], (c) robust
anisotropic voting based normal vectors [6], and (d) piecewise smooth anisotropic normal vectors [4].
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. From an input shape (a), (b) first presents our regularization. From (c) to (g), we have considered DC for different quantification of the
implicit function with 1, 2, 4, 6 and 8 bits.

(a) (b)

Fig. 4. Numerical instability of DC when using a robust normal vector field from [4] (same as the one in Fig. 2-(d)) but with positions still located in
between adjacent voxels.

To complete the Dual-Contouring discussion, Figure 3 presents DC reconstructions for several quantification steps:
the original shape (Fig. 3-(a)) corresponds to a threshold of an implicit function. In Fig. 3-(b), we have the result of
our regularization. In Figures (c) to (g) we present the DC surfaces obtained from positions and normal vectors given
by several quantification steps of the implicit function (from 1-bit to 8-bits). The 1-bit quantification (c) corresponds to
normal vectors given by gradient of the binary image and positions are in between inside/outside voxels. The 8-bits
quantification (g) corresponds to normal vectors computed from the gradient of an 8-bits representation of the function.
For fine quantification ((f) or (g)), the quality of surfaces increases as we get closer to a pure Hermite data input. However,
coarse quantification generates surfaces close to trivial MC surfaces. If we now consider DC with a robust normal vector
field (e.g. from [4]) but positions {sj} in between two heterogeneous voxels, we obtain a highly distorted reconstruction
(see Fig. 4). Except in the case of almost perfect implicit function iso-contouring, DC produces highly irregular surfaces
because of the instability of the local QEF approach.

3 l2-PROXIMITY AND STABILITY OF THE REGULARIZED SURFACE (PROOF OF PROPOSITION 1)
Assuming that our digital shape Xh was the digitization of some smooth shape X with a grid sampling step h, we
prove here that our regularized surface P ∗ is close to the boundary of Xh (i.e. the input voxel data) and also close to the
underlying unknown continuous surface ∂X . More formally, we have:

Proposition 1 (Proximity and stability). Let P be the n input voxel vertices of the boundary of Xh, and let P ∗ be the n
output vertices of our regularization process (recall that the input surface and the regularized surface have the same combinatorial
structure, so P and P ∗ are indexed similarly). Then the average distance between P ∗ and P is upper-bounded by O(h).
Furthermore, the same holds between P ∗ and ∂X . More precisely,

1

n
‖p∗i − pi‖ ≤ C · h ,

1

n
d(p∗i , ∂X ) ≤ C ′ · h , (1)

for some constants C,C ′ that depend uniquely on the reach of ∂X .

A remarkable aspect of this result is that it does not depend on the quality of the input normal vector field. It means
that the regularization is very stable in terms of vertex position, while aligning edges as good as possible so that they are
orthogonal to the input normal vector field. In practice and as illustrated by experiments, the better is the normal estimator,
the closer is P ∗ to ∂X . Since we use convergent normal estimators like the one of [5] or [4], this explains the quality of the
regularization.
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The key ingredients to the proof are :

• the fact that ∂Xh and ∂X are Hausdorff-close in O(h) (see Lemma 1);
• the fact that the projection P̃ of P onto ∂X has an energy no greater than some constant;
• the fact that P ∗ has an energy lower than the previous one.
• the fact that convergent normal estimators induce an alignment energy even smaller than data attachment;

We now proceed proving Proposition 1 in detail. In the following, let X be a compact domain of R3 with smooth
boundary and let Xh be its digitization on a grid with grid-step h (i.e. Xh = X ∩ (hZ)3). Equivalently, the digital set
Xh can be represented as a union of cubes of edge length h, i.e. a set of voxels in space. We further denote by ∂Xh the
topological boundary of Xh if seen as a union of voxels. It is thus a two-dimensional surface made of squares of side h.

Last, we assume w.l.o.g that the input normal vector field nf per face f of ∂Xh is not too far away from the continuous
normal vector field n of ∂X . More precisely, there is some real number δ ∈ [0, 1] such that:

∀f ∈ ∂Xh ,∀x ∈ X such that d(x− f) ≤ h then ‖nf − n(x)‖ ≤ O(hδ) , (2)

with d(x, f) the Euclidean distance between x and the face f . Note that if δ = 0, the equation above always hold since
normal vectors are unitary. In this case, it just means that we do not require any constraint on the input normal vector field.
In practice, we use convergent normal estimators. For instance, the one proposed in [5], [7] achieves δ = 2

3 .

3.1 Digital boundary ∂Xh and continuous boundary ∂X are geometrically close
This is due to a more general result in [8], whose formulation in 3D is:

Lemma 1 ([8], Theorem 1). If the reach of ∂X is greater than R, then, for any digitization step 0 < h < 2R/
√

3, the Hausdorff
distance between sets ∂X and ∂Xh is less than

√
3h/2. More precisely:

∀x ∈ ∂X ,∃y ∈ ∂Xh,||x− y|| ≤
√

3

2
h and ξ(y) = x , (3)

∀y ∈ ∂Xh,||y − ξ(y)|| ≤
√

3

2
h , (4)

where ξ(y) is the projection of y to the closest point on ∂X (defined for any point y ∈ R3 \MA(∂X ), MA(∂X ) being the medial
axis of X ).

From this lemma, we have that ∂Xh is
√
3
2 h−Hausdorff close to ∂X .

3.2 The projection P̃ of P onto ∂X has an energy at most constant
To simplify the presentation, we denote by P (resp. F ) the vertices (resp. faces) of ∂Xh. Let us recall the energy of a
quadrangulation P̂ with the same topological structure as ∂Xh:

E(P̂ ) = α
n∑
i=1

‖pi − p̂i‖2 + β
∑
f∈F

∑
d p̂∈∂f

(d p̂ · nf )2 + γ
n∑
i=1

‖p̂i − b̂i‖2 . (5)

We let P ∗ denote the optimal solution minimizing (5). We prove that E(P ∗) has an energy no greater than some O(1). To
do so, we examine a particular solution P̃ , defined as the projection of P onto ∂X , i.e. P̃ := ξ(P ) if ξ is the projection onto
∂X .

The key point is to evaluate the alignment term of the energy for P̃ . Hence, we focus first on

β
∑
f∈F

∑
d p̂∈∂f

(d p̂ · nf )2 .

For a given surfel f of centroid ḟ , letting c := ξ(ḟ) being its projection onto ∂X , and a given incident edge d p̃ :=
(p̃1, p̃2) = (ξ(p1), ξ(p2)), we have

(d p̃ · nf )2 = (d p̃ · (n(c) + ε(f)))2 ,

where n(c) is the normal vector to ∂X at c, the projection of the centroid of face f and ε(f) := (nf −n(c)), the error in the
normal estimation. See Figure 5 for an illustration of the notations.

We decompose the right-hand side into three terms as follows:

(d p̃ · nf )2 = (d p̃ · n(c))2︸ ︷︷ ︸
A

+ 2(d p̃ · n(c))(d p̃ · ε(f))︸ ︷︷ ︸
B

+ (d p̃ · ε(f))2︸ ︷︷ ︸
C

(6)
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p1 p2
ḟ

c

∂X

d p̃1

d p̃2

q′1

q′′1

q′′2

q′2

∂Xh

Fig. 5. Illustration of the notations used in the proof of Lemma 1.

First, we have

‖d p̃‖ = ‖p̃1 − p̃2‖ ≤ ‖p̃1 − p2‖+ ‖p1 − p2‖+ ‖p2 − p̃2‖ (7)

≤
√

3

2
h+ h+

√
3

2
h (using Thm. 1) (8)

≤ C1 · h (setting C1 := (
√

3 + 1)h) . (9)

From (2) and (4), we have that ‖ε(f)‖ ≤ C2h
δ . With (9), term C of (6) is thus upper-bounded by C2

1C
2
2 · h2+2δ .

For terms A and B, we need to develop the expression:

d p̃ · n(c) = (p̃1 − p̃2) · n(c)

= ((q′1 − p̃1) + (q′′1 − q′1) + (q′′2 − q′′1) + (q′2 − q′′2) + (p̃2 − q′2)) · n(c) ,

with notations illustrated in Figure 5. For short, p̃i and q′i are on ∂X , and q′i corresponds to the projection of pi onto ∂X
along direction n(c). Furthermore, q′′i belongs belong to the tangent plane of ∂X at c.

By construction, (q′′2 −q′′1) ·n(c)) = 0. Furthermore, we have (q′′i −q′i) ·n(c) = ±‖q′′i −q′i‖ (n(c) being unitary). Hence,

d p̃ · n(c) = (q′1 − p̃1) · n(c)± ‖q′′1 − q′1‖ ± ‖q′2 − q′′2‖+ (p̃2 − q′2) · n(c) . (10)

Since ∂X has positive reach greater thanR, the maximal absolute curvature at ∂X is upper-bounded by 1
R . For the analysis,

the greatest deformation is thus achieved by an approximation of ∂X by a circle with radius R. Classical geometry on the
circle allows us to write, for h ≤ R:

‖q′′i − q′i‖ ≤
1

R
‖q′′i − c‖2 ≤

h2

4R
. (11)

We now bound (q′i − p̃i). First, using (3)and (4), we observe that

‖p̃i − c‖ ≤ ‖p̃i − pi‖+ ‖pi − ḟ‖+ ‖ḟ − c‖

≤
√

3

2
h+

h

2
+

√
3

2
h = (

√
3 +

1

2
)h . (12)

Then, we use another result from [8], which states that the map n(·) is (
√

3/R)-Lipschitz. In other words,

‖n(p̃i)− n(c)‖ ≤
√

3

R
‖p̃i − c‖

≤
(

3 +

√
3

2

)
h

R
(using (12)). (13)

If α is the angle between n(p̃i) and n(c),

‖q′i − p̃i‖ ≤ sin(α) ·max(‖pi − p̃i‖, ‖q′i − pi‖) . (14)
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We know that ‖pi − p̃i‖ ≤
√
3
2 h. To estimate ‖q′i − pi‖, we perform the following decomposition

‖q′i − pi‖ ≤ ‖pi − f‖+ ‖f − c‖+ ‖c− q′′i ‖+ ‖q′i − q′′i ‖

≤ h

2
+

√
3

2
h+

h

2
+
h2

4R
(using (11) for the last term)

≤
(

1 +

√
3

2
+

1

4

)
h (for h ≤ R) . (15)

Note that (15) is larger than
√
3
2 h for the max(·, ·) term in (14). Since sin(α)

π ≤ α
π ≤ sin(α2 ) for positive angles lesser than

π/2, we bound sin(α) with:

sin(α) ≤ π

2
‖n(p̃i)− n(c)‖ ≤ π

2

(
3 +

√
3

2

)
h

R
. (16)

Using (15) and (16) into (14), we conclude

‖q′i − p̃i‖ ≤
(

1 +

√
3

2
+

1

4

)
π

2

(
3 +

√
3

2

)
h2

R

≤ C3 · h2 . (17)

Using (11) and (17), (10) becomes

d p̃ · n(c) ≤ (q′1 − p̃1) · n(c) + ‖q′′1 − q′1‖+ ‖q′2 − q′′2‖+ (p̃2 − q′2) · n(c)

≤ 2C3 · h2 +
h2

2R
≤ C4 · h2 .

Putting everything together, we rewrite (6) as

(d p̃ · nf )2 = (d p̃ · n(c))2 + 2(d p̃ · n(c))(d p̃ · ε(f)) + (d p̃ · ε(f))2

≤ C2
4h

4 + 2(C2
4 · h2) · ((C1 · h) · (C2 · hδ)) + C2

1C
2
2 · h2+2δ

≤ K · h2+2δ, (18)

where constant K depends only on R.
We bound now the third term (fairness term), where locally we have to bound ‖p̃i − b̃i‖:

‖p̃i − b̃i‖ = ‖p̃i −
1

|N(i)|
∑

j∈N(i)

p̃j‖ (where N(i) are the neighbors of vertex i)

≤ 1

|N(i)|
∑

j∈N(i)

‖p̃i − p̃j‖ (using triangular inequality)

≤ 1

|N(i)|
∑

j∈N(i)

‖p̃i − pi‖+ ‖pi − pj‖+ ‖pj − p̃j‖ (using triangular inequality)

≤ 1

|N(i)|
∑

j∈N(i)

(√
3

2
h+ h+

√
3

2
h

)
(using (4))

≤ (1 +
√

3)h (simplifying the expression). (19)

We can now give the energy of P̃ bounding the contribution of each edge to the energy

E(P̃ ) = α
n∑
i=1

‖pi − p̃i‖2 + β
∑
f∈F

∑
d p̃∈∂f

(d p̃ · nf )2+γ
n∑
i=1

‖p̃i − b̃i‖2

≤ αn3

4
h2 + β

∑
f∈F

∑
d p̃∈∂f

(d p̃ · nf )2+γn(1 +
√

3)2h2 (using (4) and (19))

≤ αn3

4
h2 + 4βmK · h2+2δ+γn(1 +

√
3)2h2 (using (18)) (20)

For a smooth shape ∂X with positive reach, we bound the number of vertices n and faces m of ∂Xh by O(h−2) (e.g. see [8],
immediate consequence of Lemma 10). As a consequence, we conclude that E(P̃ ) is in O(1) as h tends to zero, whatever is
the value of δ ≥ 0.
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3.3 Proximity of P ∗ to P and to ∂X
The rest of the proof is more straightforward. First, since P ∗ is a minimizer of the energy and using the bound above, we
have

E(P ∗) ≤ E(P̃ ) = O(1) (21)

As a consequence, if we decompose E(P ∗), we have

α
n∑
i=1

‖pi − p∗i ‖2 + β
∑
f∈F

∑
dp∗∈∂f

(dp∗ · nf )2+γ
n∑
i=1

‖p∗i − b∗i ‖2 ≤ K ′ (22)

for some constant K ′ in the O(1) bound of (21). Eq. (22) being a sum of three positive terms, we have

α
n∑
i=1

‖pi − p∗i ‖2 ≤ K ′ .

Using Cauchy-Schwartz inequality, we have

n∑
i=1

‖pi − p∗i ‖ ≤
(

n∑
i=1

‖pi − p∗i ‖2
)1/2√

n .

Finally, the average error as stated in Proposition 1 can be rewritten as∑n
i=1 ‖pi − p∗i ‖

n
=

√
K ′

α

1√
n
. (23)

Since the orthogonal projection ξ of ∂Xh onto ∂X is surjective and the Jacobian is upperbounded by 4 ([8], Lemma 9),
we have Area(∂X ) = Area(ξ(∂Xh)) ≤ 4Area(∂Xh) = 4mh2, with m the number of faces of ∂Xh, each of area h2. Since
n = Θ(m), we have n = Ω(1/h2). So 1/

√
n = O(h) and thus∑n

i=1 ‖pi − p∗i ‖
n

= O(h) , (24)

which concludes the left bound in (1) of Proposition 1. The right bound is an immediate consequence of the fact that the
digital surface P is itself O(h)−Hausdorff close to ∂X (see Lemma 1).

3.4 Impact of the input normal vector field
As seen above, the regularized surface is always close to the continuous shape boundary ∂X , with a distance in O(h) on
average. This is even true for bad normal estimations. Of course, the better the normal estimation, the nicer the regularized
surface. This can be seen in (20). Indeed, if parameter α is set small with respect to β (which is our case in all experiments),
then the energy of the projection ξ(P ) decreases in O(h2δ). Choosing convergent normal estimators like in [5], [7] implies
δ = 2

3 . So this energy characterizing normal alignment decreases quickly to 0 as h tends to 0. Since the optimal solution P ∗

has an even smaller energy than ξ(P ), it means that P ∗ has almost the same normal vector field as ∂X , while being close
on average. Otherwise said, it is almost the same surface. This explains why the regularized surface looks so much as the
boundary of the underlying continuous shape.

4 GRADIENT OF E AS A LINEAR OPERATOR

In this section, we briefly describe the construction of the sparse linear system obtained from the equation ∇E(p∗) = 0 as
proposed in [9].

Let p (resp. p̂) be the 3n column vector constructed by packing all n initial vertices coordinates together (resp. all n
regularized vertices coordinates together). The norm used in the data attachment term can be defined from some scalar
product on R3n defined by a 3n× 3n SDP matrix W̄0. The data attachment energy can then be expressed as

n∑
i=1

‖pi − p̂i‖2 = (p− p̂)TW̄0(p− p̂) . (25)

The definition of the barycenter appearing in the fairness term

b̂i :=
1

|N(i)|
∑

j∈N(i)

p̂j

is linear with respect to p̂. Hence, there exists a 3n× 3n sparse matrix B such that b̂ = Bp̂. Using the same scalar product
as before, we can express the fairness energy as

n∑
i=1

‖p̂i − b̂i‖2 = p̂T (I−B)TW̄0(I−B)p̂ (26)
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where I the 3n× 3n identity matrix.
Let p be the number of edges of P and recall thatm is its number of faces. We can define a 3p×3n sparse matrix D which

represents edges from vertices positions, that is d p̂ = Dp̂. Another 4m× 3p sparse matrix U can be built to compute, for
each faces, the scalar product between the prescribed face normal vector and the four edges vectors. Introducing finally a
4m× 4m SDP matrix W̄2 linked to a scalar product in R4m, we can express the normal alignment energy as∑

f∈F

∑
d p̂j∈∂f

(d p̂j · nf )2 = p̂T DT UT W̄2 UDp̂ (27)

Now E(p̂) has a fully matricial expression and its gradient with respect to p̂ can be computed using quadratic form
matrix differentiation. This lead to the following expression for ∇E(p∗) = 0(

αW̄0 + βDT UT W̄2 UD+γ(I−B)TW̄0(I−B)
)
p̂ = αW̄0p . (28)

Note that this linear system is sparse if the scalar product matrices W̄0 and W̄2 are sparse, that is if spatially localized
scalar products are used. Furthermore, as long as weights α, β and γ are positive (and strictly positive for α), the linear
operator on the left-hand side of (28) is positive definite and thus invertible.
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