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Abstract. The sequence of maximal segments (i.e. the tangential cover)
along a digital boundary is an essential tool for analyzing the geometry
of two-dimensional digital shapes. The purpose of this paper is to de-
fine similar primitives for three-dimensional digital shapes, i.e. maximal
planes defined over their boundary. We provide for them an unambigu-
ous geometrical definition avoiding a simple greedy characterization as
previous approaches. We further develop a multiscale theory of maximal
planes. We show that these primitives are representative of the geometry
of the digital object at different scales, even in the presence of noise.

1 Introduction

Maximal segments [5, 7] are the inextensible digital straight segments over the
boundary of digital shapes. They have proven to be an essential tool for analyzing
the geometry of 2D digital shapes, for instance for length and tangent estima-
tion [14, 3], curvature estimation [7, 9], multiresolution analysis [6], unsupervised
noise detection [10] or minimum length polygon computation. Furthermore, this
theory of maximal segments can be extended to take into account possible noise
in the data. The principle is simply to authorize thicker digital straight seg-
ments. This approach was proposed by Debled-Rennesson et al. [4], where a
user specifies a maximal thickness in the segment decomposition.

Unfortunately, there is for now no equivalent theory for 3D or nD shapes, i.e.
the definition and computation of maximal planes. A natural approach would
be related to the convex hull, but it is not satisfactory for non convex shapes.
Polyhedrization methods could also be considered as good candidates for defin-
ing maximal planes, since they are piecewise linear reconstruction of the shape
boundary. Unfortunately, existing methods use greedy algorithms, whose result
is for instance dependent on the starting point. Several polyhedrization methods
[8, 12] starts from a point and greedily aggregates surrounding points as long
as they form a digital planar set. Then, it chooses arbitrarily a new point and
repeat the process until all points have been visited. As the reader may check on
the freely available implementation of [16], these methods do not capture well
linear or smoothly curved parts. More elaborate methods ([1] and especially [15])



address partially the problem of distinguishing polyhedral parts from smoothed
parts. A user-given parameter and some ad hoc rules improve the previous poly-
hedrization algorithms. However, the obtained planes are again algorithmically
obtained, without geometric or analytic description.

There exists a lot of reconstruction algorithms from scattered data in the
image synthesis and computational geometry field. However, they do not take
into account the specific geometry of digital spaces. For instance, if the object
is the digital polyhedron, such algorithms cannot recognize digital planes as
Euclidean planes. A staircase effect or an over-smoothing is generally the result
of these algorithms.

The essential problem for defining interesting digital planes over a digital
surface is that they must be characteristic of the local shape geometry, i.e. they
should act as a local tangent plane. Now, no such problem exists in 2D, since
the greedy inextensible digital linear sets — the so-called maximal segments
— have been proven to be good tangent approximation [14]. However, in 3D,
most inextensible digital planar sets are not characteristics of the local tangent
geometry of the shape. For instance, any slice in the shape is planar, whatever
the chosen direction. We must therefore find a way to select the representative
planes within all these planar sets.

It is clear that the combinatorics of all planar sets of an object is too impor-
tant. A natural approach is to find the smallest subset of these primitives which
covers the digital boundary. But it is unlikely to find such an algorithm since
this problem has been shown to be NP-complete [17].

We propose a new approach to tackle this problem by introducing the concept
of maximal (hyper)planes at a given scale and the hierarchy of such primitives.
Its objective is to satisfy the following requirements:

1. Maximal planes should approach the notion of tangent plane, whether the
object under study is the digitization of a smooth shape with curvatures or
the digitization of polyhedral surfaces.

2. It should take into account the specific nature of digital data, for instance,
digital planes should be recognized in one piece.

3. Maximal planes must have a sound geometric definition. They are not only
defined as the result of an algorithm, nor depend on user-given parameter(s).

4. They should be defined at different scales, so as to analyze the shape geome-
try at progressive resolutions. In this way, geometric analysis of noisy shapes
can be addressed.

5. Ideally, this definition should encompass the classical 2D definition of max-
imal segments.

The paper is thus organized as follows. Maximal (hyper)planes are defined in
Section 2, and their hierarchy is also presented. Section 3 proposes algorithms to
compute them, a time complexity analysis is also carried out. Section 4 presents a
natural application of hierarchical maximal planes: the estimation of the normal
vector field of digital shapes. Results on known shapes show that maximal planes
are characteristic of the shape geometry at different scales, whether the shape



is the digitization of a polyhedral or smoothly curved object. Furthermore, the
presence of noise is addressed by the multiscale hierarchy. Section 5 concludes
and lists several future research perspectives.

2 Definition of Maximal Hyperplanes

In this section, we define the hierarchy of maximal planes that covers any dis-
crete surface. We restrict our study to digital surfaces of Zn, but the framework
remains valid for finite subsets of Rn with connectivity relations like triangulated
surfaces.

2.1 Digital Surface and Tightiest Hyperplane

We recall that in the 3D cell complex approach of Kovalevsky (e.g., see [13,
11]), 3-cells (open unit cubes), 2-cells (open unit squares), 1-cells (open unit
segments) and 0-cells (closed points) are respectively called voxels, surfels, linels
and pointels.

The surface under study is always denoted by S and it corresponds to some
graph (V,E), where the set of vertices V is a subset of Zn and the set of edges
E is the connectivity relation between these vertices. Note that this framework
covers several definitions of digital surfaces, for instance:

– The set V may represent the border voxels of a digital object and E is
then the neighborhood graph of V , choosing for instance the (2n, 3n − 1)
adjacencies [Rosenfeld]

– The set V may represent the surfels centroid of a digital object boundary
and E is then any bel adjacency [Herman93,Udupa94]

– The set V may represent the pointels of a digital object boundary and E is
simply the grid 1-cells between them.

A subset X of Zn is called a piece of digital hyperplane if it corresponds to
the discretization of a piece of Euclidean hyperplane. As a Euclidean hyperplane
is characterized by its normal vector, the same applies for digital hyperplanes.

We usually define arithmetically digital hyperplanes as follows. The set of
points X in Z

n corresponds to a piece of digital naive hyperplane of normal
vector N = (N1, . . . , Nn) ∈ Z

n if any point p of X satisfies:

µ ≤ N · p < µ+ ||N ||∞ (1)

where N is in its lowest terms. Let ek denote the axis such that ||N ||∞ = Nk,
then ek is called the major axis of the piece of digital hyperplane.

We can rewrite the preceeding double inequality as follows :

maxp∈X(N · p)−minp∈X(N · p)

||N ||∞
< 1 (2)

We can geometrically interpret this definition of digital naive hyperplane. Con-
sider two Euclidean hyperplanes of normal vector N such that the set of points



X is contained between the two hyperplanes and such that at least one point of
X lies one each hyperplane. These two hyperplanes are called supporting hyper-
planes and (2) means that the Euclidean distance between these two hyperplanes
relative to the major axis is strictly less than 1. We notice that, by allowing a
larger distance between supporting hyperplanes, we can define thicker digital
hyperplanes.

Obviously, a given subset X corresponds to the discretization of several Eu-
clidean hyperplanes, resulting of a small variation of the normal vector. As a
consequence, we choose the following definition, which has the advantage of
defining without ambiguity one plane for a given subset X of Zn. Among all
arithmetic digital hyperplanes which contain X , the one with the smallest axis-
aligned thickness is called the tightiest hyperplane containing X , and is written
TH(X). If several axes induce a tightiest hyperplane, we choose the first one.
The normal vector N(X) to X is the normal vector to the tightiest hyperplane,
pointing in the same half-space as its axis. The thickness of X is the thickness

of TH(X), otherwise said the quantity t(X)
def
=

maxp∈X (N(X)·p)−minp∈X(N(X)·p)
||N(X)||∞

.

2.2 Neighborhood, ν-thick Disk and Extension

Let ‖·‖ be the Euclidean norm. The closed ball of radius r centered at some point
p is denoted by Bp(r). For a given vertex p of S, the set of vertices of S lying
in Bp(r) defines a subgraph of S. There may be several connected component in
this subgraph, but the only one containing p is called the r-neighborhood of p in
S, and is written Sp(r).

The r-neighborhood of p admits a tightiest plane. Its thickness is clearly an
increasing function of r, denoted by wp. Since we are considering a finite graph,
this function is piecewise constant on intervals [rk, rk+1[. Inversely, for a given
thickness ν, the radius function ρp(ν) is defined as follows: ρp(ν) = rk iff ν ∈
[wp(rk), wp(rk+1)[.

The subgraph Sp(ρp(ν)) is called the ν-thick disk around p, and is simply

denoted with Sν
p . The ν-tightiest plane around p is defined as THν

p

def
= TH(Sν

p ).

Its normal direction is written as
−→
N ν

p.
This plane is characteristic of the tangent space at p at a given scale ν. It

forms a strip in the space of axis-thickness no greater than ν, which contains p
and an isotropic connected neighborhood around it of radius ρp(ν). Having an
isotropic neighborhood is interesting when analyzing the digitization of shapes
with smooth boundaries. However, when the object under study contains planar
facets (e.g. polyhedra, manufactured objects), this neighborhood is not always
pertinent. It is therefore interesting to consider the extension to the largest
connected component including p and belonging to THν

p . The ν-thick extension
around p is defined as the subgraph of S:

S
ν

p

def
= {The connected component of {S ∩ THν

p } that contains p}.

Since Sν
p ⊂ THν

p , it is obvious that S
ν
p ⊂ S

ν

p. The ν-thick extension thus contains
the ν-thick disk around any vertex.



Figure 1 illustrates an example of a 1-thick disk (in yellow) and its surround-
ing ball (in green) on the surface of an ellipse (left). On the right, its 1-thick
extension is represented.

Fig. 1. A ν-thick disk and its surrounding ball (left), its ν-thick extension (right)
(ν = 1)

2.3 Maximal Disks and Hierarchy of Active Vertices

The preceding definitions may let us think that any point of a surface induces
a maximal disk and a maximal plane for a given scale. This is rather counter-
intuitive. We tend to think that the coarser is the scale the simpler is the object.
We would expect less maximal disks and extensions at coarser scales. We there-
fore introduce a mechanism to keep only the most significant disks and exten-
sions at each scale. Furthermore, this mechanism naturally induces a hierarchy
on these neighborhoods.

A ν-thick disk is maximal iff for any vertex q ∈ S, q 6= p, the ball Bp(ρp(ν))
is not included in the ball Bq(ρq(ν)) or p 6∈ THν

q . The first condition guarantees
that Sν

p ⊂ Sν
q whenever p and q lie in the same component of S ∩ Bp(ρq(ν)).

The second condition approximates this connection condition efficiently.
We may now define a hierarchy of active vertices for any sequence of increas-

ing thicknesses (νi)i=0,...,L, with ν0 = −1, ν1 = 0, νL = t(S). For the sake of
convenience, we admit that the first thickness of the sequence is negative. The
following process defines a hierarchy (Fνi)i=−1,...,L:

Fνi =

{

{set of vertices of S} if i = 0,
{p ∈ Fνi−1 : Sνi

p is maximal} if i ≥ 1.
(3)

Furthermore, if the sequence (νi) is refined uniformly, then the family of sets
converges uniformly toward a piecewise constant family of sets (Fν)ν∈R, with
the convenient convention that ∀ν < 0,Fν = S. The sequence of values ν,
such that Fν is only right-continuous, represents the stable scales for S and
are denoted as a sequence (µi)i=0,...,L′ . By construction, this hierarchy of active
vertices at progressive scales only depends on the input surface S (vertices and
edges).



By definition of the hierarchy (Fνi)i=−1,...,L, it is obvious that S = F<0 ⊃
F0 ⊃ . . . ⊃ Fµi ⊃ Fµi+1 ⊃ . . . ⊃ FµL′ . As a consequence, we obtain the
following property:

Property 1. ∀µ, µ′ ∈ R, µ < µ′ ⇒ Fµ ⊇ Fµ′

.

Moreover, we notice that at a given scale ν each vertex q ∈ S belongs to at
least one ν-thick disk. This leads to the next property :

Property 2. ∀ν ∈ R,
⋃

p∈Fν Sν
p = S and ∪p∈FνS

ν

p = S.

Definition 1. The tangential cover Tν at scale ν of S is the set of subgraphs

T
ν def

= {S
ν

p : p ∈ Fν}.

Each element of T
ν is called a ν-maximal plane of S. The set of ν-maximal

planes containing a vertex p is called the ν-linear pencil of p.

Figure 2 shows an example of maximal 1-thick disk (yellow) containing two
different non maximal 1-thick disk.

Fig. 2. 1-thick maximal disk in yellow (left), 1-thick disks included in the yellow one
(right)

Figure 3 shows an example of two maximal ν-thick disks in red and yellow
for 1 ≤ ν ≤ 3 (from (a) to (c)) on a noisy surface. The red one is not maximal
anymore when ν = 4 because it is included in the yellow one, as a consequence,
its center is not an active vertex anymore at scale 4.

3 Computation and Time Complexity

In this section, we present our algorithm for the computation of the hierarchy of
active vertices. This hierarchy leads to the computation of the tangential cover
of the surface at different scales.



(a) ν = 1 (b) ν = 2 (c) ν = 3 (d) ν = 4

Fig. 3. Two distinct maximal ν-thick disks for 1 ≤ ν ≤ 3, inclusion of the red 4-thick
disk in the maximal yellow one

3.1 Algorithm Design

Our method computes the hierarchy of active vertices Fνi
i=−1,...,K for a given

sequence of increasing thicknesses (νi)i=0,...,K , with ν0 = −1, ν1 = 0, . . ., relative
to a given surface S. It is summarized in Algorithm 1 and we return to the main
steps in the following.

Algorithm 1: Hierarchy of active vertices algorithm

INPUT : S , (νi)i=0,...,K1

OUTPUT : Fνi
i=−1,...,K2

Q← NULL3

F−1 ← {set of vertices of S}4

FOR EACH increasing thickness νi, 0 ≤ i ≤ K5

L← NULL6

FOR EACH vertex p of Fνi−1
7

Q.push(Sνi
p );8

WHILE(!empty(Q))9

A← Q.pop()10

IF(∀B ∈ L, !(A ⊂ B))11

L.push(A)12

Fνi ← Fνi ∪ A.center()13

By convention, F−1 corresponds to the set of vertices of S. For each thickness
νi, 0 ≤ i ≤ K, the set Fνi is induced by the set Fνi−1 and the main steps of our
approach are the following :

1. Computing the νi-thick disk around p, for each vertex p belonging to Fνi−1 .
The νi-thick disks are stored in a priority queue (denoted by Q) ordered
relative to the radius of the disks, the largest disk lying on the top of the
priority queue.

2. Extracting of the priority queue the maximal νi-thick disks and adding their
vertex center to Fνi



The first step consists in computing the νi-thick disk Sνi
p around p, for each

vertex p belonging to Fνi−1 . For this, we use in an incremental way a digital
plane recognition algorithm such as the COBA algorithm introduced in [2]. The
method adds neighboors of p in a specific order as long as they belong to the
same νi-thick plane. Let us call rk-ring of a point p the subgraph defined by
Sp(rk) \ Sp(rk−1). It adds the vertices of the rk-ring of p, for each increasing
k > 1. If a vertex of the rk-ring cannot be added (the set of vertices will not cor-
respond to a νi-thick disk anymore), all the vertices of rk-ring of p are removed
from the subgraph and the algorithm stops. We illustrate the construction of
νi-thick disk around p, denoted by Sνi

p , in Algorithm 2. We use a priority queue,
denoted by Q, which contains vertices ordered relative to their Euclidian dis-
tance to the initial point p. The closest vertex lies on the top of the queue.

Algorithm 2: The ν-thick disk algorithm

INPUT : S , ν, p1

OUTPUT : Sν
p2

DP ← TRUE Sν
p ← ∅ Q← NULL3

Q.push(p)4

WHILE(!empty(Q) AND DP )5

q ← Q.pop()6

IF(q /∈ Sν
p )7

Sν
p ← S

ν
p ∪ q8

IF(isDigitalPlane(Sν
p ,ν))9

Q.push(neighboors of q)10

ELSE11

r ← q.EuclidianDistanceTo(p)12

Sν
p ← S

ν
p \ r-ring(p)13

DP ← FALSE14

The second step consists in extracting the maximal νi-thick disks and adding
their vertex center to Fνi . At the end of the first step, νi-thick disks are stored
in a priority queue ordered relative to their radius. We remove each disk of the
priority queue, beginning with the disk on the top, and we wonder whether it is
maximal or not. If it is maximal, it is added to a queue called L and its center is
added to Fνi . Obviously, a disk cannot be included in one of smaller radius. We
also notice that, because two disks cannot have the same center, a disk cannot be
included in one of the same radius. The first extracted disk is obviously maximal
and so it is added to the queue L. By construction of the priority queue, for each
extracted disk d, we only have to test the inclusion of d in the disks of the queue
L.



3.2 Time Complexity Analysis

We propose to analyse the time complexity of the hierarchy of active vertices
algorithm (Algorithm 1).

Let S denote the surface under study, let us denote by D and m its diameter
and the number of vertices of its associated subgraph respectively. According to
Property 1, for all i such that 0 ≤ i ≤ k, Fνi is included in or equal to Fνi−1 .
As a consequence, the number of vertices of each Fνi is bounded by m, for all i
such that −1 ≤ i ≤ k. As the time complexity of the computation of each Fνi

only depends on the cardinality of its ascending set and of the diameter of the
surface, we can study separately the time complexity of the computation of a
set Fνi whatever νi.

For a given thickness νi, the first step consists in computing the maximal
νi-thick disks centered on each vertex of the set Fνi−1 and adding it to priority
queue. To compute each νi-thick disk, the COBA algorithm is used to incremen-
tally construct a maximal isotropic piece of digital plane of thickness νi. As in
the non-incremental case, the COBA algorithm runs in O(m log(D)) time (see
[2]). The pushing operation on a prority queue runs in O(log(l)) time where l

denotes the size of the priority queue. As the size of our priority queue is obvi-
ously bounded by m, this step runs in O(log(m)) time. Because O(log(m)) can
be neglected relative to O(m log(D)), the first step runs in O(m2 log(D)) time.

The second step consists in extracting the maximal νi-thick disks. For each
νi-thick disk of the priority queue, the method tests whether it is included in
a larger one. As the number of larger νi-thick disks is bounded by m for each
disk, deciding whether it is maximal or not runs in O(m) time. As a consequence,
checking the maximality of every disks of the priority queue runs in O(m2) time.

To conclude, as O(m2) can be neglected relative to O(m2 log(D)), the com-
putation of the set Fνi for a given thickness νi runs in O(m2 log(D)) time in the
worst case. The computation of all the hierarchy of active vertices for (νi)i=0,...,L

runs in O(Lm2 log(D)) in the worst case.

4 Application

We proposed in Section 3 an algorithm to compute the hierarchy of active vertices
at different scales. Moreover, we introduced the definition of the tangential cover
of a surface S at a given scale ν (see Definition 1), induced by the set of active
vertices at scale ν.

Knowing the tangential cover Tν of a surface S at a scale ν naturally leads
to the normal estimation of the surface at each point at this scale. Indeed, each
ν-maximal plane of Tν represents a tangent plane for each covered vertex. To
each vertex v of the surface, we associate the average of the normal vectors of
each ν-maximal plane of its ν-linear pencil.

For a regular discrete surface, we expect the normal estimation to be well
representative at scale 1. Conversely, if the discrete surface is noisy, the normal
estimation could be wrong for some vertices representing noise at scale 1. Nev-
ertheless, we expect that at coarser scales our normal estimation gets improved,



until we reach the stable scale. This stable scale represents the global noise level
added on the surface.

We implement our method in C++ using the ImaGene library. We generate
three-dimensional regular discrete shapes, we choose to add noise or not, we com-
pute its tangential cover at a given scale and we estimate a normal vector at each
surface voxel. In order to visualise the result, we display the three-dimensionnal
surface using Inventor by associating to each surface voxel its estimated normal
vector. As a consequence, when the surface is lighted, we can immediatly judge
whether the normal estimation is consistent.

Figure 4 shows the result of our normal estimation at scale 1 on the regular
surface of a cube, of a sphere and of an ellipse. Figure 5 and figure 6 show the
result of our normal estimation on noisy surfaces of a cube and of an ellipse
respectively, at scales 1, 2 ,3 and 4. We notice that the normal estimation gets
more and more consistent until stability at scale 4.

(a) (b) (c)

Fig. 4. Normal estimation at scale 1 of regular discrete surfaces

(a) ν = 1 (b) ν = 2 (c) ν = 3 (d) ν = 4

Fig. 5. Normal estimation at scale 1, 2, 3 and 4 of a noisy discrete surface : a cube



(a) ν = 1 (b) ν = 2 (c) ν = 3 (d) ν = 4

Fig. 6. Normal estimation at scale 1, 2, 3 and 4 of a noisy discrete surface : an ellipse

Finally, we show the result of our normal estimation on realistic data rep-
resenting an old car (data available on the TC18 website3). Figure 7 shows the
original object and the result of our normal estimation at scale 1. Figure 8 shows
the original object with additional noise and the result of our normal estimation
on this noisified object at scale 1, 2 and 3.

(a) (b)

Fig. 7. Discrete object representing a Dodge (left), normal estimation at scale 1 (right)

5 Conclusion and Perspectives

We propose in this paper a new definition for the tangential cover of a three-
dimensional digital shape based on the computation of maximal planes over its
surface. Moreover, we provide an algorithm to compute the hierarchy of active
vertices at different scales, which induces the tangential cover of the shape at each
scale. We highlight the fact that maximal planes are locally representative of the
shape and so that they can be used to estimate the normal vector at each point

3 http://tc18.liris.cnrs.fr



(a) original (b) ν = 1

(c) ν = 2 (d) ν = 3

Fig. 8. Original object and normal estimation at scale 1, 2 and 3 of a noisy discrete
object : a dodge

on the surface. The study of maximal planes over a discrete surface could also
lead to estimation of local or global noise level on a three-dimensional surface.
Moreover, we think that, as they provide an estimation of the normal vector at
each point, they could also be used to extract other geometric characteristics
as the curvature. We could work on them to discriminate curve parts from flat
parts on the surface or to divide up the surface in convex and in concave parts.
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