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Abstract. The notion of convexity translates non-trivially from Eu-
clidean geometry to discrete geometry, and detecting if a discrete region
of the plane is convex requires analysis. In this paper we study digital
convexity from the combinatorics on words point of view, and provide a
fast optimal algorithm checking digital convexity of polyominoes coded
by the contour word. The result is based on the Lyndon factorization
of the contour word, and the recognition of Christoffel factors that are
approximations of digital lines.

Keywords: Digital Convexity, Lyndon words, Christoffel words

1 Introduction

In Euclidean geometry, a given region R is said to be convex if and only if
for any pair of points p1, p2 in R the line segment joining p1 to p2 is completely
included in R. In discrete geometry on square grids, the notion does not translate
trivially, since the only convex (in the Euclidean sense) regions are rectangles.
Many attempts have been made to fill the gap, and a first definition of discrete
convexity based on discretisation of continuous object came from Sklansky [1]
and Minsky and Papert [2]. Later, Kim [3, 4] then Kim and Rosenfeld [5] provided
several equivalent characterizations of discrete convex sets, and finally Chaudhuri
and Rosenfeld [6] proposed a new definition of digital convexity based this time
on the notion of digital line segments (see [7] for a review of digital straightness).

Given a finite subset S of Z2 its convex hull is defined as the intersection of
all Euclidean convex sets containing S. Of course all the vertices of the convex
hull are points from S. Therefore, throughout this work, a polyomino P (which
is the interior of a closed non-intersecting grid path of Z2) is called convex if and
only if its convex hull contains no integer point outside P . Debled-Rennesson et
al. [8] already provided a linear time algorithm deciding if a given polyomino is
convex. Their method uses arithmetical tools to compute series of digital line
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segments of decreasing slope: optimal time is achieved with a moving digital
straight line recognition algorithm [9, 10]

Recently, Brlek et al. looked at discrete geometry from the combinatorics
of words point of view, showing for instance how the discrete Green theorem
provides a series of optimal algorithms for diverse statistics on polyominoes [11,
12]. This method is extended to study minimal moment of inertia polyominoes
in [13]. This approach also gave an elementary proof and a generalization [14,
15] of a result of Daurat and Nivat [16] relating salient and reentrant points
in discrete sets. Some geometric properties of the contour of polyominoes may
be found in [17, 18]. Recently it was successfully used to provide an optimal
algorithm for recognizing tiles that tile the plane by translation [19, 20]. It is
worth noting that the study of these objects goes back to Bernouilli, Markov,
Thue and Morse (see Lothaire’s books [21–23] for an exhaustive bibliographic
account) and as suggested in the recent survey of Klette and Rosenfeld [7] the
bridge between discrete geometry and combinatorics on words will benefit to
both areas.

Here we study the problem of deciding whether a polyomino coded by its
contour word, also called Freeman chain code, is convex or not. To achieve this
we use well known tools of combinatorics on words. The first is the existence
of a unique Lyndon factorization, and its optimal computation by the linear
algorithm of Duval [24]. The second concerns the Christoffel words, a class of
finite factors of Sturmian words, that are discrete approximations of straight
lines. After recalling the combinatorial background and basic properties, we pro-
pose another linear time algorithm deciding convexity of polyominoes. This new
purely discrete algorithm is much simpler to implement. Some experiments re-
vealed that it is 10 times faster than previous linear algorithms. Furthermore,
one of its main interests lies in the explicit link between combinatorics on words
and discrete geometry. Since our method does not rely on geometric and vector
computations, it also shows that digital convexity is much more fundamental
and abstract property than general convexity.

2 Preliminaries

A word w is a finite sequence of letters w1w2 · · ·wn on a finite alphabet Σ, that
is a function w : [1..n] −→ Σ, and |w| = n is its length. Consistently its number
of a letters, for a ∈ Σ, is denoted |w|a. The set of words of length n is denoted
Σn and the set of all finite words is Σ∗, the free monoid on Σ. The empty word
is denoted ε and by convention Σ+ = Σ∗ \ {ε}. The k-th power of word w is
defined by wk = wk−1 · w with the convention that w0 = ε. A word is said
primitive when it is not the power of a nonempty word. A period of a word w is
a number p such that wi = wi+p, for all 1 ≤ i ≤ |w| − p.

Given a total order < on Σ, the lexicographic ordering extends this order to
words on Σ by using the following rule :

w < w′ if either (i) w′ ∈ wΣ+,
(ii) w = uav and w′ = ubv′ with a < b, a, b ∈ Σ, u ∈ Σ∗.



Two words w, w′ on the alphabet Σ are said to be conjugate, written w ≡ w′, if
there exist u, v such that w = uv and w′ = vu. The conjugacy class of a word is
defined as the set of all its conjugates and is equivalent to the set of all circular
permutations of its letters.

Let w be a finite word over the alphabet {0, 1}. We denote by −→w the vector
(|w|0, |w|1). For any word w, the partial function φw : N −→ Z × Z associates
to any integer j, 0 ≤ j ≤ |w|, the vector φw(j) = −−−−−−−−→w1w2 · · ·wj . In other words,
this map draws the word as a 4-connected path in the plane starting from the
origin, going right for a letter 0 and up for a letter 1. This extends naturally to
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Fig. 1. Path encoded by the word w = 01000110.

more general paths by using the four letter alphabet Σ = {0, 1, 0, 1}, associating
to the letter 0 a left step and to 1 a down step. This notation allows to code the
border of any polyomino by a 4-letter word known as the Freeman chain code.

The lexicographic order < on points of R2 or Z2 is such that (x, y) < (x′, y′)
when either x < x′ or x = x′ and y < y′. The convex hull of a finite set S of
points in R2 is the smallest convex set containing these points and is denoted
by Conv(S). S being finite, it is clearly a polygon in the plane whose vertices
are elements of S. The upper convex hull of S, denoted by Conv+(S), is the
clockwise oriented sequence of consecutive edges of Conv(S) starting from the
lowest vertex and ending on the highest vertex. The lower convex hull of S,
denoted by Conv−(S), is the clockwise oriented sequence of consecutive edges of
Conv(S) starting from the highest vertex and ending on the lowest vertex.

3 Combinatorics on words

Combinatorics on words has imposed itself as a powerful tool for the study of
large number of discrete, linear, non-commutative objects. Such objects appears
in almost any branches of mathematics and discrete geometry is not an exception.
Traditionally, discrete geometry works on characterization and recognition of
discrete objects using arithmetic approach or computational geometry. However
combinatorics on words provide mathematical tools and efficient algorithms to
address this problem as already mentioned. Lothaire’s books [21–23] constitute
the reference for presenting a unified view on combinatorics on words and many
of its applications.



3.1 Lyndon words

Introduced as standard lexicographic sequences by Lyndon in 1954, Lyndon words
have several characterizations (see [21]). We shall define them as words being
strictly smaller than any of their circular permutations.

Definition 1. A Lyndon word l ∈ Σ+ is a word such that l = uv with u, v ∈ Σ+

implies that l < vu.

Note that Lyndon words are always primitive. An important result about
Lyndon words is that any word w admits a factorization as a sequence of de-
creasing Lyndon words :

w = ln1

1 ln2

2 · · · lnk

k (1)

where n1, n2, . . . , nk ≥ 1 and l1 > l2 > · · · > lk are Lyndon words (see Lothaire
[21] Theorem 5.1.1). Such a factorization is unique and a linear time algorithm
to compute it is given in Section 5.

3.2 Christoffel words

Introduced by Christoffel [25] in 1875 and reinvestigated recently by Borel and
Laubie [26] who pointed out some of their geometrical properties, Christoffel
words reveal an important link between combinatorics on words and discrete
geometry.

This first definition of Christoffel word, borrowed from Berstel and de Luca
[27], highlights their geometrical properties and helps to understand the main
result of this work stated in Proposition 2. Let Σ = {0, 1}. The slope of a word
is a map

ρ : Σ∗ → Q ∪ {∞}

defined by
ρ(ǫ) = 1, ρ(w) = |w|1/|w|0, for w 6= ǫ.

It is assumed that 1/0 = ∞. It corresponds to the slope of the straight line joining
the first and the last point of the path coded by w. For each k, 1 ≤ k ≤ |w|, we
define the set

δk(w) = {u ∈ Σk|ρ(u) ≤ ρ(w)},

of words of length k whose slope is not greater than the slope of w. The quantity

µk(w) = max{ρ(u)|u ∈ δk(w)}

is used to define Christoffel words (see Figure 2).

Definition 2. A word w is a Christoffel word if for any prefix v of w one has

ρ(v) = µ|v|(w).

A direct consequence of this definition is that given a Christoffel word ur = vs

for some r, s ≥ 1, both words u and v are also Christoffel words. From an
arithmetical point of view, a Christoffel word is a connected subset of a standard
line joining upper leaning points (see Reveillès [28]). The following properties of
Christoffel words are taken from Borel and Laubie [26].
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Fig. 2. The path coded by the Christoffel word w = 00010010001001 staying right
under the straight line of slope r = 2

5
.

Property 1. All primitive Christoffel words are Lyndon words.

Property 2. Given c1 and c2 two Christoffel words, c1 < c2 iff ρ(c1) < ρ(c2).

Property 3. Given r ∈ Q+ ∪ {∞}, let Fr be the set of words w on the alphabet
{0, 1} such that ρ(v) ≤ r for all non-empty prefix v of w. Fr correspond to
the words coding paths, starting from the origin, that stay below the Euclidean
straight line of slope r. Among these paths, those being the closest ones to the
line and having their last point located on it are Christoffel words.

Originally Christoffel [25] defined these words as follows. Given k < n two
relatively prime numbers, a (primitive) Christoffel word w = w1w2 . . . wn is
defined by :

wi =

{

0 if ri−1 < ri,
1 if ri−1 > ri,

where ri is the remainder of (i k) mod n.
In [27] Berstel and de Luca provided an alternative characterization of prim-

itive Christoffel words. Let CP be the set of primitive Christoffel words, PAL

the set of palindromes and PER the set of words w having two periods p and q
such that |w| = p + q − 2. The following relations hold :

CP =
(

{0, 1} ∪ 0 · PER · 1
)

⊂
(

{0, 1} ∪ 0 · PAL · 1
)

.

These properties of Christoffel words are essential for deciding if a given word is
Christoffel or not.

4 Digital convexity

There are several (more or less) equivalent definitions of digital convexity, de-
pending on whether or not one asks the digital set to be connected. We say that a
finite 4-connected subset S of Z2 is digitally convex if it is the Gauss digitization
of a convex subset X of the plane, i.e. S = Conv(X) ∩ Z2.

The border Bd(S) of S is the 4-connected path that follows clockwise the
pixels of S that are 8-adjacent to some pixel not in S. This path is a word of
{0, 1, 0, 1}∗, starting by convention from the lowest point and in clockwise order.



Definition 3. A word w is said to be digitally convex if it is conjugate to the

word coding the border of some finite 4-connected digitally convex subset of Z2.

Note that implicitely, a digitally convex word is necessarily closed. Now, every
closed path coding the boundary of a region is contained in a smallest rectangle
such that its contour word w may be factorized as follows. Four extremal points
are defined by their coordinates:

S

w
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w
1

3
w

w
2
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W
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W is the lowest on the Left side;
N is the leftmost on the Top side;
E is the highest on the Right side;
S is the rightmost on the Bottom side;
So that w ≡ w1w2w3w4.

This factorization is called the standard decomposition. We say that a word w1

in {0, 1}∗ is NW-convex iff there are no integer points between the upper convex
hull of the points {φw(j)}j=1...|w| and the path w.

Define the counterclockwise π/2 circular rotation by

σ : (0, 1, 0, 1) 7−→ (1, 0, 1, 0).

Then we have w2 in {0, 1}∗ is NE-convex iff σ(w2) is NW-convex, and more

w (w)σ

w = 1111001011010000,

σ(w) = 0000110100101111.

generally, in the factorization above

wi is convex ⇐⇒ σi−1(wi) is NW-convex.

Clearly, the convexity of w requires the convexity of each wi for i = 1, 2, 3, 4,
and we have the following obvious property.

Proposition 1. Let w ≡ w1w2w3w4 be the standard decomposition of a poly-

omino. Then w is digitally convex iff σi−1(wi) is NW-convex, for all i.

Let Alph(w) be the set of letters of w. Observe that if for some i, wi contains
more than 2 letters, that is if Alph(σi−1(wi)) 6⊆ {0, 1}, then w is not digitally
convex.

We are now in position to state the main result which is used in Section 5 to
design an efficient algorithm for deciding if a word is convex.



Proposition 2. A word v is NW-convex iff its unique Lyndon factorization

ln1

1 ln2

2 · · · lnk

k is such that all li are primitive Christoffel words.

In order to prove Proposition 2, we first need the following lemma.

Lemma 1. Let v ∈ {0, 1}∗ be a word coding an NW-convex path and let e be one

of the edges of its convex hull. The factor u of v corresponding to the segment

of the path determined by e is a Christoffel word.

This is a direct consequence of Property 3 since both the starting and ending
points of an edge of the convex hull of a discrete figure are necessarily part of
its border. We may now proceed to the proof of Proposition 2.

Proof. Let v be a word coding an NW-convex path and let the ordered sequence
of edges (e1, e2, . . . , ek) be the border of its convex hull. For each i from 1 to k, let
ui be the factor of v determined by the edge ei so that v = u1u2 · · ·uk. Let li be
the unique primitive word such that ui = lni

i . By definition of NW-convexity and
Lemma 1, ui is a Christoffel word, which implies that li is a primitive Christoffel
word. By Property 1, li is also a Lyndon word. Now, since (e1, e2, . . . , ek) is the
convex hull of w, it follows that the slope si of the edge ei is greater than the
slope si+1 of the edge ei+1 leading to the following inequality :

ρ(li) = ρ(ui) = si > si+1 = ρ(ui+1) = ρ(li+1).

By Property 2 we conclude that li > li+1. Thus ln1

1 ln2

2 · · · lnk

k is the unique
factorization w as a decreasing sequence of Lyndon words.

Conversely, let v ∈ {0, 1}+ be such that its Lyndon factorization ln1

1 ln2

2 · · · lnk

k

consists of primitive Christoffel words. For each i from 1 to k, let ei be the
segment joining the starting point of the path coded by lni

i to its ending point.
We shall show that (e1, e2, . . . , ek) is the upper convex hull of φv. Since lni

i is
a Christoffel word, Property 3 ensures that no integer point is located between
the path coded by lni

i and the segment ei and, moreover, the path always stays
below the segment. By hypothesis, li > li+1. Using the same argument as before
we have that the slope of ei is strictly greater than the slope of ei+1.

We have just built a sequence of edges which is above the path φv, such that
no integer points lies in-between, and with decreasing slopes. (e1, e2, . . . , ek) is
thus the upper convex hull of φv and v is NW-convex. ⊓⊔

For example, consider the following NW-convex path v = 1011010100010.

0
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The Lyndon factorization of v is

v = (1)1 · (011)1 · (01)2 · (0001)1 · (0)1,

where 0, 011, 01, 0001 and 0 are all Christof-
fel words.



5 Algorithm to check word convexity

We give now a linear time algorithm checking digital NW-convexity for paths
encoded on {0, 1}. This is achieved in two steps: first we compute the prefix ln1

1 of
the word w using the Fredricksen and Maiorana algorithm [29] (rediscovered by
Duval [24]), and then Algorithm 2 below checks that the Lyndon factor l1 ∈ CP .
Iterating this process on all Lyndon factors of w provides the answer whether
all li are primitive Christoffel words.

Given a word w ∈ Σ∗ whose Lyndon factorization is w = ln1

1 ln2

2 . . . lnk

k , the
following algorithm, taken from Lothaire’s book [23], computes the pair (l1, n1).

Algorithm 1 (FirstLyndonFactor)
Input w ∈ Σn ; Output (l1, n1)
1 : (i, j)← (1, 2)
2 : while j ≤ n and wi ≤ wj do
3 : If wi < wj then
4 : i← 1
5 : else
6 : i← i + 1
7 : end if
8 : j ← j + 1
9 : end while

10 : return (w1w2 · · ·wj−i, ⌊(j − 1)/(j − i)⌋)

Clearly this algorithm is linear in n1|l1|, and hence the Lyndon factorization
of w is computed in linear time with respect to |w|. On the other hand, given
a primitive word w ∈ {0, 1}∗, checking whether it is a Christoffel word is also
achieved in linear time using the definition from [25]: first, compute k = |w|1
and n = |w|; then compute successively r1, r2, . . . , r⌈n/2⌉ where ri = (i k) mod n
and verify that wi satisfies the definition. Note that since CP \ {0, 1} ⊂ 0PAL1
the second half of w is checked at the same time by verifying that wi = wn−i+1

for 2 ≤ i ≤ ⌈n/2⌉. This yields the following algorithm.

Algorithm 2 (IsChristoffelPrimitive)
Input w ∈ Σn

1 : k ← |w|1; i← 1; r ← k ;
2 : rejected := not(w1 = 0 and wn = 1)
3 : while not(rejected) and i < ⌈n/2⌉ do
4 : i← i + 1 ; r′ ← r + k mod n
5 : If r < r′ then
6 : rejected← not(0 = wi and 0 = wn−i−1)
7 : else
8 : rejected← not(1 = wi and 1 = wn−i−1)
9 : end if

10 : r ← r′

11 : end while
12 : return not(rejected)



Combining these two algorithms provides this following algorithm that checks
NW-convexity of a given word w ∈ Σ∗.

Algorithm 3 (IsNW-Convex)
Input w ∈ Σn

1 : index← 1 ; rejected← false
2 : while not(rejected) and index ≤ n do
3 : (l1, n1)← FirstLyndonFactor(windexwindex+1 · · ·wn)
4 : rejected← not(IsChristoffelPrimitive(l1))
5 : index← index + n1|l1|
6 : end while
7 : return not(rejected)

Equation (1) ensures that
∑

i |li| ≤ |w| so that this algorithm is linear in the
length of the word w.

5.1 The final algorithm

According to Proposition 1, we have to check convexity for each term in the
standard decomposition w ≡ w1w2w3w4. Instead of applying the morphism σ to
each wi, which requires a linear pre-procesing, it suffices to implement a more
general version of Algorithm 1 and Algorithm 2, with the alphabet and its order
relation as a parameter. For that purpose, ordered alhabets are denoted as lists
Alphabet = [α, β] with α < β.

The resulting algorithm is the following where we assume that w is the con-
tour of a non-empty polyomino.

Algorithm 4 (IsConvex)
Input w ∈ Σn

0 : Compute the standard decomposition w ≡ w1w2w3w4;
1 : rejected← false; i← 1; Alphabet← [0, 1];
2 : while not(rejected) and i ≤ 4 do
3 : u← wi; k← |u| ;
4 : if Alph(u) ⊆ Alphabet then
5 : index← 1;
6 : while not(rejected) and index ≤ k do
7 : (l1, n1)← FirstLyndonFactor([uindexuindex+1 · · ·uk], Alphabet);
8 : rejected← not(IsChristoffelPrimitive(l1), Alphabet);
9 : index← index + n1|l1|;

10 : end while
11 : else
12 : rejected← true;
13 : end if
14 : i← i + 1; Alphabet← [σi−1(0), σi−1(1)];
15 : end while
16 : return not(rejected)



Remark. For more efficiency, testing that the letters of wi belong to σi−1({0, 1}∗)
(Line 4) can be embedded within the algorithm FirstLyndonFactor or in the
computation of the standard decomposition (Line 0) and returning an exception.

6 Concluding remarks

The implementation of our algorithm was compared to an implementation of
that of Debled-Rennesson et al. [8]. The results (see figure below) showed that
our technique was 10 times faster than the technique of maximal segments.
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This speedup is partially due to the fact that computing maximal segments
provides more geometrical informations while testing convexity is simpler. Nev-
ertheless, our algorithm is much simpler conceptually and suggests that the
notion of digital convexity might be a more fundamental concept than what is
usually perceived. The fact that the combinatorial approach delivers such an ele-
gant algorithm begs for a systematic study of the link between combinatorics on
words and discrete geometry. In particular, there exist another characterization
of Christoffel words that involve their palindromic structure.

Among the many problems that can be addressed with this new approach
we mention the computation of the convex hull. It is also possible to improve
algorithm IsConvex by merging some computations in one pass instead of call-
ing independent routines. The resulting algorithm is more tricky, but providing
a still faster implementation, and its description will appear in third author’s
PhD dissertation [30].
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