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Abstract We propose a novel approach to reconstruct
shapes from digital data. Contrarily to most methods, re-
constructed shapes are smooth with a well-defined curva-
ture field and have the same digitization as the input data:
the range of application we have in mind is especially post-
processing to image segmentation where labelled regions
are digital objects. For this purpose, we introduce three new
algorithms to regularize digital contours based on the mini-
mization of Willmore energy: our first algorithm is based on
tools coming from discrete geometry, the second is related
to convex geometry while the third approach is a constrained
phase field minimization. The three algorithms are described
in details and the convergence of the phase field approach
is investigated. We present a comparative evaluation of all
three methods, in terms of the accuracy of curvature estima-
tors and computation time.
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1 Introduction

Shapes which minimize their total squared curvature have
risen a lot of interest in the mathematics community. In the
2D plane, they are known as Euler elastica [8, 21], while
its 3D variant is the minimization of the Willmore energy
[34, 35] and has lead to the Willmore conjecture [37]. Such
shapes have nice properties (smoothness, sphericity) and
arise in different fields of mathematical modeling (defor-
mation of thin plate, waving of a snake, red blood cells),
computer vision and image analysis (e.g. see the famous
deformable models [23]). We wish here to design methods
that reconstruct a smooth shape based solely on a digital
description (subset of the digital plane). The reconstructed
shape should have a well-defined curvature field and should
have the same digitization as the input data. Let us point
out that it exists a wide literature on shape reconstruction
from discrete data (to quote a few standard references [3, 5,
17, 24, 30]). Most of those methods are not adapted to our
context since either they reconstruct piecewise linear objects
or they smooth data without taking into account the spatial
constraints induced by the digitization.

Recently, Kerautret and Lachaud [25, 26] proposed to use
these shapes for reconstructing a continuous analog to dig-
ital shapes: the so-called GMC method. The idea is to find
among all possible Euclidean shapes that have the same dig-
itization as the digital shape of interest, the one with smallest
total squared curvature. In a sense, due to its smoothness and
invariance properties, this Euclidean shape is a very natural
one with the desired digitization. By this way, they obtain
a curvature estimator with many desirable properties (accu-
racy, stability, robustness to noise).

In their paper, the authors solve an approximate version
of this problem. The family of shapes is restricted to com-
pact simply connected shapes of R

2 with boundary made
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of circular arcs with tangent continuity. Furthermore, the
digitization constraint is not exactly enforced but only ap-
proached.

In this paper, we propose two others methods to address
this problem, each one having its advantages and drawbacks.
The first one uses the support function of convex sets [36]. It
is limited to the reconstruction of convex digital shapes, sat-
isfies exactly the digitization constraints, is simple to imple-
ment and relatively fast. Due to its proved reliability, we use
this method to assess the second one. However its restriction
to convex shapes limits its role in practical applications.

The second more flexible method is related to phase field
approaches [1, 6]. It can reconstruct arbitrary digital shapes,
satisfies the digitization constraint up to a given error bound,
but is slower. These two methods are finely compared. The
second one is also compared to the original method pro-
posed in [25, 26], in order to evaluate the accuracy of this
approximated solution with respect to curvature estimates.

Before presenting the three methods, we state precisely
our problem. A digital object O is a non-empty finite sub-
set of Z

2. To simplify the exposition, the object O will also
be considered 4-connected, with its complement in Z

2 8-
connected. Such digital objects are often called polyomi-
noes. Their digital contour is a simple 4-connected curve in
the half-integer plane. We consider the family F of simply
connected compact shapes in R

2, whose boundary is rec-
tifiable and whose curvature map is in L2. This constraint
avoids fractal-like shapes and the curvature, while not com-
pulsory defined everywhere, is therefore square integrable.
By definition, the topological boundary of a subset X of R

2

is the subset of R
2 defined as the closure of X minus its in-

terior. We denote it by ∂X further on. Since shapes in F are
simply connected, their boundary is a simple closed curve
of the plane. Finally, let Dig : P (R2) → Z

2 be the Gauss
digitization process, i.e. Dig(X) = X ∩ Z

2.
We are only interested in Euclidean shapes that have the

same digitization as the digital object O . We therefore con-
sider the family

F(O) = {X ∈ F,Dig(X \ ∂X
︸ ︷︷ ︸

interior

) ⊂ O and

Dig(R2 \ X
︸ ︷︷ ︸

exterior

) ⊂ Z
2 \ O}.

We wish to find some optimal shape solution of:

inf
X∈F(O)

F (X), with F(X) =
∫

∂X

κ2dσ, (1)

where the symbol κ stands for the standard curvature. Notice
that the well-posedness of the previous shape optimization
problem is not obvious. The existence question and the lo-
cal optimality conditions will be addressed in a forthcoming
work.

Our paper is organized as follows. We begin in Sect. 2
by recalling the optimization method of [25, 26], which ex-
tracts an approximated solution to (1) and is valid for ar-
bitrary digital object. In Sect. 3, we describe the first new
method for solving (1), which is limited to convex shapes.
Section 4 presents the second new method for solving (1),
which is valid for arbitrary digital object. Section 5 presents
a comparative evaluation of all three methods, in terms of
accuracy and computation time. More precisely, the accu-
racy of the generic phase field method is assessed on con-
vex shapes by comparison with fine results obtained by our
first approach. Our experiments confirm the quality of the
phase field approach. Finally, we compare the approximated
curvature estimator of [25, 26] to the curvature field of the
phase field reconstruction. It appears that this approximation
is both good and robust while computation time is hundred
times faster.

2 Digital Geometry Approach

This section summarizes the digital geometry approach to
solve (1) [25, 26]. The idea is to extract the linear subparts
of the boundary of the digital object O . Each identified lin-
ear subpart locally defines upper and lower constraints on
the local slope of the Euclidean shape boundary. The opti-
mization problem is then solved in a tangent space where
the optimized contour is represented by its slopes, and not
by its positions.

More precisely, the input data is the inter-pixel boundary
of some digital object, that we will call later on a digital
contour. It is thus a 4-connected closed path C in the digital
plane, whose points Ci are numbered consecutively. These
points lie in the half-integer plane since pixel centers have
integer coordinates. A sequence of connected points of C

going in an increasing sequence of indices from Ci to Cj is
conveniently denoted by Ci,j .

Such a sequence is a digital straight segment iff its
points are included in some standard digital straight line,
i.e. ∃(a, b,μ) ∈ Z

3,∀k, i ≤ k ≤ j,μ ≤ axCk
− byCk

< μ +
|a| + |b|. The standard line with smallest |a| and containing
the sequence, defines the characteristics (a, b,μ) of the dig-
ital straight segment. In particular, the slope of the segment
is a/b. Let us now denote by S(i, j) the predicate “Ci,j is a
digital straight segment”. A maximal segment of C is a se-
quence Ci,j such that S(i, j) ∧ ¬S(i, j + 1) ∧ ¬S(i − 1, j).
The maximal segments are thus by definition the inextensi-
ble digital straight segments of C. Together, they constitute
the tangential cover of C, as illustrated on Fig. 1, left.

The tangential cover of a digital contour can be efficiently
computed in linear time with respect to its number of points
[20, 28]. The directions of maximal segments may be used to
estimate the tangent direction of the underlying shape [28].
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Fig. 1 Left: tangential cover of
the boundary of a digitized
shape, where each maximal
segment is drawn as a black
bounding box aligned with its
slope. Right: slope of a maximal
segment and estimation of
maximal and minimal slopes
with leaning points

Fig. 2 The shape of interest is an ellipse of semi-axes 10 and 6, ro-
tated by 0.5 radians (see Fig. 1). Left: bounds given by each maximal
segment on the possible local tangent direction. A possible underlying
shape should have its tangent space representation staying within these

boxes. Right: Each variable has a possible range given by its vertical
line. The shape that minimizes its squared curvature is represented by
the dashed line

Here we also make use of the direction of maximal seg-
ments, but to estimate locally the geometries of all possible
underlying shapes. We proceed as follows.

1. Each maximal segment tells us some information on
the local geometry of the underlying continuous shape.
In particular, the direction of maximal segment gives
bounds on the possible tangent directions of the contin-
uous shape around this place. These bounds are deduced
from the upper and lower leaning points of the maximal
segment (Fig. 1, right).

2. We associate to every closed C1-curve C parameterized
by its arc length s the graph function which maps s to
the tangent direction at C(s). The domain is [0, |C|[, |C|
being the length of C , and the range is [0,2π[. Such a
representation, that we call hereafter tangent space, de-
fines the closed curve geometry up to a translation.

3. We fix C0 as the starting point of the arc length parame-
terization. Given a digital length estimator, we can esti-
mate the arc length si associated to any point Ci , and also
the total perimeter |C|. For each maximal segment Ci,j ,

we then draw in the tangent space an axis aligned box
spanning abscissas si to sj and whose ordinates are the
inverse tangent of the bounds determined above (Fig. 2,
left).

4. A curve whose tangent space representation stays within
the boxes defined above defines a shape which is approx-
imately digitized as O . The family of curves whose tan-
gent space representation stays within the boxes is thus
an approximation of F(O), and the subsequent optimiza-
tion process will take place in this approximate family
(Fig. 2, right).

We therefore find the optimal shape of (1) in the tangent
space representation. Finally let t (s) be the tangent direction
of the curve at curvilinear abscissa s. Item (4) of the preced-
ing paragraph gives the approximate bounds a(s) and b(s)

on the tangent direction of C at s. This is illustrated on Fig. 2
and detailed in [26]. Solving (1) reduces to solving:

min
t :∀s,a(s)≤t (s)≤b(s)

∫ |C|

0

(

dt

ds

)2

ds, (2)
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with t a piecewise C1-function from [0, |C|] to [0,2π[, with
t (0) = t (|C|). Let us now denote by (il)l∈{0..L−1} the increas-
ing sequence of indices of the digital points that are start-
ing or ending point of a maximal segment, and let (s(il )) be
the corresponding sequence of curvilinear abscissae. Look-
ing now at an arbitrary portion [sil , sil+1 [ of the curve, the
functions a and b are constant on this interval and denoted
by (al) and (bl). Standard variation calculus on (2) im-
mediately gives the necessary condition 2 d

ds
dt
ds

= 0 when
a(s) < t(s) < b(s). If tl = t (sl), then the solution in this
interval is the straight segment t (s) = tl + tl+1−tl

sil+1−sil
(s − sil ).

A straight segment in the tangent space is a circular arc in the
plane. Equation (2) is thus reduced to the finite-dimensional
optimization problem:

Find (tl)l∈{0..L−1},

which minimizes F(t0, . . . , tL−1)

=
∑

l

(

tl+1 − tl

sil+1 − sil

)2

(sil+1 − sil ),

subject to ∀l, al ≤ tl ≤ bl.

We use classical iterative numerical techniques to solve this
convex optimization problem. More precisely, we optimize
variables consecutively, similarly to a relaxation method
(see for instance [13]). Geometrically, the tangent direction
of the optimal curve is the piecewise linear function going
through points (sil , tl). Tangent and curvature are straight-
forwardly obtained, while position is obtained by integra-
tion. The obtained curve is not closed in general which is
a drawback if the user is interested not only by curvature
estimates but also by a spatial reconstruction.

This method only approaches the solution of (1) since
the bounds on tangent directions do not guarantee that the
shape is in F(O). The length of the optimal curve is also
a priori guessed with a length estimator, and is thus only
approached. We can nevertheless notice that the length es-
timator is the integration of λ-MST tangent estimator [28],
which is proven to be uniformly multigrid convergent to the

true length in O(h
1
3 ), where h is the discretization step [27].

This method is very fast, since the number of variables to op-

timize is some O(N
2
3 ), if N is the number of digital points

of C [14].

3 Regularization of Convex Contour

We present in this section a numerical approach restricted
to the two dimensional convex case. More precisely, we re-
strict our study to the case of convex constraints and convex
regularization. This strong hypothesis makes it possible to

transform our regularization task into one convex optimiza-
tion problem. This new formulation leads us to an efficient
and reliable numerical algorithm in dimension 2.

In that simplified convex context, our regularization prob-
lem reduces to identify an optimal convex set � solution of:

inf
�int⊂�⊂�ext

F(�)

where �int and �ext are full-dimensional convex sets of the
plane and

F(�) =
∫

∂�

κ2 dσ (3)

where κ stands for the mean curvature on ∂�. Notice that
the minimization of F is equivalent to minimize the classi-
cal Willmore energy since the genus is constant in the class
of convex bodies (see [37] for a complete introduction to
Willmore conjecture). To introduce our parametrization of
convex sets we recall some classical definitions of convex
geometry. Let � be a 2 dimensional convex set. We define
h�, the support function of �, as the function defined on the
unit circle S1 which satisfies:

h�(θ) = sup
x∈�

x · ν(θ)

where ν(θ) = (cos θ, sin θ) and the dot stands for the usual
scalar product of R

2. Notice that if 0 ∈ �, h�(θ) is sim-
ply the distance from the origin to the tangent line to � of
normal direction ν(θ). In addition, the relation of inclusion
of convex sets is equivalent to the ordering of support func-
tions. For instance in our context,

�int ⊂ � ⊂ �ext ⇔ h�int ≤ h� ≤ h�ext . (4)

Moreover, if h� is regular enough and � is strictly convex
such that its reverse Gauss map is well defined, it satisfies
point-wise the differential equation

d2h�

dθ2
+ h� = R (5)

where R is the radius of curvature at the (unique) point
of ∂� of normal direction ν(θ). Conversely, for any posi-
tive 2π -periodic function R which satisfies the orthogonal-
ity conditions

∫ 2π

0
R cos θ dθ =

∫ 2π

0
R sin θ dθ = 0, (6)

it exists a unique convex set � ⊂ R
2 (up to translations)

whose support function h� satisfies (5). Additionally, if h�

is regular enough and R > 0, the cost function (3) can be
computed by

F(�) =
∫ 2π

0

1

R
dθ =

∫ 2π

0

(

d2h�

dθ2
+ h�

)−1

dθ. (7)
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As a consequence, solving the optimization problem (3) is
equivalent to solve the convex and linear constrained prob-
lem:

inf
h�int ≤h≤h�ext

∫ 2π

0

(

d2h

dθ2
+ h

)−1

dθ

among 2π -periodic functions which satisfy d2h

dθ2 + h ≥ 0.
This last condition ensures that h is a support function of
some 2 dimensional convex set. This last remark is the start-
ing point of our numerical approach based on a discretiza-
tion by the radius of curvature.

Let n ∈ N
∗ be given and (Ri)1≤i≤n be a positive vec-

tor which corresponds to the values of a step function R on
[0,2π] associated to a subdivision a0 = 0 < a1 · · · < 2π =
an. Assume that R satisfies the orthogonality conditions (6).
Every solutions h of (5) has the form Ai cos θ +Bi sin θ +Ri

on every interval [ai−1, ai] for i = 1, . . . , n . Let us se-
lect one particular solution h(Ri) of (5) by imposing to (Ai)

and (Bi) the continuity conditions of h and h′ at the points
a1, . . . , an−1, an. Under those constraints, the identification
of the unknowns (Ai) and (Bi) is equivalent to solve a well
posed linear system of size 2n. In addition, every solutions
h((Ri),τ ) of the above differential equation can be written in
the form

h((Ri),τ ) = h(Ri) + τ · ν(θ) (8)

for some τ ∈ R
2. The two additional degrees of freedom

of τ correspond to the choice of a translation. With these
notations the optimization problem reduces to

min
((Ri),τ )

n−1
∑

i=0

ai+1 − ai

Ri+1
(9)

under the additional constraints (6) and the infinite number
of point-wise constraints

h�int ≤ h((Ri),τ ) ≤ h�ext . (10)

In order to obtain a finite number of constraints we relax the
last condition by imposing the previous inequalities only on
a discrete number of values (θj )1≤j≤m of [0,2π]. Since the
coefficients of h((Ri),τ ) depend linearly on the vector (Ri)

this set of constraints is linear with respect to the parame-
ters ((Ri), τ ). Finally we have to solve (9) under the 2 linear
equalities (6) imposed on the parameters ((Ri), τ ), the pe-
riodic condition R1 = Rn and the m + n linear inequalities
associated to (10) and the positiveness of (Ri).

In order to achieve the numerical optimization proce-
dure, we used the standard commercial software KNITRO
(see [7]) which implements an interior/projected conjugate
gradient algorithm. The stopping criterion is based on first
order optimality conditions. The algorithm stops when the
‖.‖∞ norm of the Lagrangian is less than 1e–6 times its ini-
tial value.

4 Minimization of Willmore Energy via Phase Field
Method

The aim of this section is to present a phase field model
adapted to the minimization of the Willmore problem:

�∗ = argmin
�int⊂�⊂�ext

∫

∂�

κ2dσ. (11)

Let us first recall the easier and well-known case of the
approximation of mean curvature flow [1, 2, 9, 12, 18, 19]
by phase field method. In this situation the interface evolves
according to the gradient flow of the perimeter P(�) =
∫

∂�
1dσ .

The main idea of the phase field approach is to use
an approximation of the perimeter P given by the famous
Ginzburg–Landau functional [31, 32]:

Pε(u) =
∫

Rd

(

ε

2
|∇u|2 + 1

ε
W(u)

)

dx, (12)

where ε > 0 is a small parameter, and W is a double well
potential with wells locate at 0 and 1 (for example W(s) =
1
2 s2(1 − s)2). Modica and Mortola [31, 32] have shown
the �-convergence of Pε to cWP in L1(Rd) (see also [4]),
where cW = ∫ 1

0

√
2W(s)ds. Roughly speaking, this result

asserts that the minimization of the perimeter is equivalent
to the minimization of (12) with ε small. From a theoreti-
cal point of view, notice that, assuming the optimal shape
� is known, then an optimal solution of (12) is provided by

uε = q(
dist(x,�)

ε
). The associated profile function q solves

the one dimensional problem

q = argmin

{∫

R

(

1

2
γ ′2 + W(γ )

)

;γ ∈ H 1
loc(R),

γ (−∞) = +1, γ (+∞) = 0,

γ (0) = 1

2

}

(13)

and dist(x,�) is the signed distance function associated
to �. This result shows that the phase field profiles are ob-
tained by a smoothing of the distance function inversely pro-
portional to the parameter ε.

One major difference with standard phase field approach
relies in the inclusion constraints. In order to tackle this is-
sue, we define the following penalized perimeter problem

P�int,�ext (�) =
{∫

∂�
1dσ if �int ⊂ � ⊂ �ext

+∞ otherwise

where �int and �ext are two given smooth subsets of R
d

such that dist(∂�int, ∂�ext) > 0. We then introduce two con-
tinuous potentials Wint and Wext satisfying the following as-
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sumptions:

(H1)

⎧

⎪
⎨

⎪
⎩

Wint(s) = W(s) for s ≥ 1/2,

Wint(s) ≥ W(s) for s ≤ 1/2,

W ′
int(s) < 0 for s < 1/2,

and

⎧

⎪
⎨

⎪
⎩

Wext(s) = W(s) for s ≤ 1/2,

Wext(s) ≥ W(s) for s ≥ 1/2,

W ′
ext(s) > 0 for s > 1/2.

Then, we denote by Pε,�int,�ext the relaxed energy:

Pε,�int,�ext (u)

=
∫

Rd

[

ε|∇u|2
2

+ 1

ε
W�int,�ext (u, x)

]

dx,

where W�int,�ext (s, x) is defined by

W�int,�ext (s, x) =

⎧

⎪
⎨

⎪
⎩

Wint(s) for x ∈ �int,

Wext(s) for x ∈ R
d \ �ext,

W(s) for x ∈ �ext \ �int.

Intuitively, the previous potential forces uε to be asymptot-
ically equal to 1 on �int and 0 on �ext. More precisely, we
demonstrate in Appendix A that Pε,�int,�ext �-converges to
cWP�int,�ext . This proof closely follows the one of [31, 32].

To study the case of Willmore’s energy where F(�) =
∫

∂�
κ2dσ , we consider the following approximation intro-

duced in [15, 16]:

Fε(u) =
∫

Rd

1

ε

(

−ε�u + 1

ε
W ′(u)

)2

dx.

Notice that previous equation is close, but not at all equiv-
alent, to the more standard Cahn-Hilliard equation (see
for instance [10] for some interesting properties related
to Cahn-Hilliard equation). In our context, it easily fol-
lows that Fε does not �-convergence to cWF . Nevertheless,
Roger and Schatzle have recently established [33] that � −
limε→0(Fε +Pε) = cW (F +P). Notice that it is straightfor-
ward to deduce that, whatever the parameter δ > 0, Fε +δPε

converges to cW (F + δP ). As a consequence we will ne-
glect in our experiments the perimeter term applying previ-
ous result with δ small. Moreover, to deal with our additional
boundary constraints, we modify Fε as follows

Fε,�int,�ext (u)

=
∫

Rd

1

ε

(

−ε�u + 1

ε
∂uW�int,�ext (u, x)

)2

dx.

Whereas this convergence has not been proved yet, we ex-
pect that the same ideas of the proof given in the Appendix A

apply and give:

� − lim
ε→0

(

Fε,�int,�ext + Pε,�int,�ext

)

= cW

(

F + P�int,�ext

)

.

We will use in the following the gradient flow of Fε,�int,�ext

to approximate our optimization problem. Standard varia-
tion calculus gives the Euler-Lagrange equation which is
used in our phase field formulation:

ut = −�2u + 1

ε2

(

�∂uW�int,�ext (u)

+
(

�u − 1

ε2
∂uW�int,�ext (u, x)

)

× ∂uuW�int,�ext (u, x)

)

(14)

Let us denote by uε the solution of (14) with initial condi-
tion u0 of the form u0 = q(dist(x,�0)/ε), where the initial
set �0 is assumed to satisfy �int ⊂ �0 ⊂ �ext. The station-
ary limit of uε(x, t) as t → ∞ is expected to be of the form
q(dist(x,�∗

ε )/ε), for some �∗
ε approximating (11) as ε goes

to zero. For numerical purposes, we assume that �ext is con-
tained in the fixed box Q = [−1/2,1/2]d and we look for
periodic solutions of the partial differential equation (14).
Moreover we choose the potentials Wint and Wext as follows:

Wint(s) =
{

1
2 s2(1 − s)2 for s ≥ 1

2 ,

10(s − 0.5)4 + 1/32 otherwise,

Wext(s) =
{

1
2 s2(1 − s)2 for s ≤ 1

2 ,

10(s − 0.5)4 + 1/32 otherwise.

Our scheme is based on a splitting method which takes ad-
vantage of the periodicity of uε to solve the bi-laplacian part
by Fourier’s method (see for instance [11]). More precisely,
the value uε(x, tn) at time tn = t0 + nδt is approximated by

uR
ε (x, tn) =

∑

p∈Zd ,‖p‖∞≤R

uε,p(tn)e
2iπp·x.

where R is the resolution of the spectral grid. In a first step,
we set

uR
ε (x, tn + 1/2) =

∑

p∈Zd ,‖p‖∞≤R

uε,p(tn + 1/2)e2iπp·x,

with

uε,p(tn + 1/2) = uε,p(tn)e
−16π4δt |p|4 .
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We then integrate all the other terms explicitly:

uR
ε (x, tn + 1) = uR

ε (x, tn + 1/2)

+ δtG(uR
ε (x, tn + 1/2)),

with

G(u) = 1

ε2

(

�∂uW�int,�ext (u)

+
(

�u − 1

ε2
∂uW�int,�ext (u, x)

)

× ∂uuW�int,�ext (u, x)

)

.

Let us remark that the first step is performed by fast
Fourier transform, with a computational cost of order
O(Rd ln(R)). Numerically, we observed that the condition
δt ≤ min(Mδ2

xε
2,M2ε4) is sufficient for the stability of the

algorithm, where δx = 1
R

and M = [supt∈[0,1]{W ′′(t)}]−1.

5 Comparative Evaluation of the Three Optimization
Methods

5.1 Description of the Tests Cases

We proceed as follows to validate our numerical optimiza-
tion methods. In a first series of experiments, we evaluate
the accuracy of the phase field method by comparing it to
the convex-restricted method. The objective is to determine
if the phase field method can compete with a reference tech-
nique to extract the optimal shape. Therefore, we evaluate
the global

∫

κ2 value for both methods, and we check how
spatial constraints are satisfied by both.

Since the phase field approach, while generic, is very
competitive with the reference method, we run a second se-
ries of experiments to compare how the GMC method is
close to the phase field approach for evaluating the curva-
ture field of the digitized shapes.

For our experiments we use several types of digital
shapes (see Figs. 5 and 6), which are all obtained through
digitization of well known Euclidean shapes (disks, ellipses,
polygons, . . .). Input data is therefore a simple digital con-
tour. The digitization constraint is then a one pixel wide
band around the former contour. Due to the restriction to
convex data of the first series of experiments, the former
pixel band is replaced with two convex polygons: the inner
polygon is the convex hull of the interior points and the outer
polygon is the maximal translation toward exterior points of
the inner polygon edges.

More experiments and detailed results can be
found at http://www.lama.univ-savoie.fr/~oudet/Willmore/
experiments.html. Furthermore the GMC code is freely dis-
tributed within the ImaGene library at https://gforge.liris.
cnrs.fr/projects/imagene, executable curvature_gmc.

5.2 Phase Field Versus Convex Regularization

We start the evaluation of our three different approaches
by a comparison between the convex and phase field meth-
ods. In the very simple case of convex contours, as it has
been reported in Sect. 3, our regularization procedure re-
duces to a convex programming problem. To compare the
efficiency and the reliability of the methods we use the fol-
lowing protocol. Assume that each method produces a dis-
crete sequence of points (Pn) which describes a polygonal
approximation of an optimal convex curve. By definition,
the energy associated to a polygonal line is always infinite.
Thus the first step of our comparison is to approximate those
lines by contours of finite energies. The following steps de-
scribe an approach which is very close from the one intro-
duced in Sect. 3 which constructs an approximation by a
sequence of arcs of circles:

1. Associate to (Pn) the support function of its convex hull
by

h(Pn)(θ) = sup
n

Pn · ν(θ)

2. Evaluate h(Pn) on a grid of S1 of size Ng to produce a set
of values hg

3. Look for an optimal sequence of positive radius of cur-
vature (Ri) of length Nc and a translation τ which are
optimal in the least square sense:

((Ri), τ ) = argmin‖L(((Ri), τ )) − hg‖2

under the constraints (6) where L is the linear operator
of evaluation of the associated support function at the an-
gles of the grid of S1. We used the algorithm introduced
in [29], Chap. 23, p. 161 to perform this step.

4. Associate to ((Ri), τ ) its support function h.

We apply the above steps for the output contours of both
methods. Let us call hpf and hc the support functions ob-
tained by the previous approximation with Ng = 1e3 and
Nc = 4e2. We made intensive computations on the test cases
described in Sect. 5.1. Whereas the phase field method al-
ways converges to a local optimal curve, it happens that
the convex approach was not able to identify an admissible
curve. This bad behavior of the convex method comes from
the fact that the convex regularization of the constraints may
lead to very close curves (see for instance the pentagon of
the last row of Fig. 3). Moreover, in the case of simple poly-
gons, the curvature may change dramatically rapidly with
respect to its angular parametrization. As a consequence, the
equally spaced discretization of S1 that we first implemented
was not efficient in those singular cases. To overcome this
difficulty we adapt the sampling points of S1 to the optimal
locations of knots in the interpolation of (hin + hext)/2 (see
[22] for the details of the algorithm). It should be noted that

http://www.lama.univ-savoie.fr/~oudet/Willmore/experiments.html
http://www.lama.univ-savoie.fr/~oudet/Willmore/experiments.html
https://gforge.liris.cnrs.fr/projects/imagene
https://gforge.liris.cnrs.fr/projects/imagene
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Fig. 3 Optimal curves obtained
by the convex approach (left
column) and phase field method
(right column). The first and
third rows present similar results
while the second illustrates the
existence of critical curves
obtained by the phase field
method which are not global
minimizers

even with those modifications the convex method has to sat-
isfy exactly the constraints whereas the phase field method
is allowed to relax the space of admissible shapes. This ex-
plains the wrong apparent better behaviour of the phase field
method with respect to the convex ones in some cases: as a
matter of fact these two methods do not solve exactly the
same problem.

We present in Tables 1, 2 and 3 the results obtained by
the two methods. The symbol “fu” means that the center of
the shape has been randomly chosen with uniform proba-
bility on the unit square. Figure 3 shows the optimal curves
obtained by both methods on three test cases. The first and
third test cases present similar results while the second illus-
trates the existence of critical curves obtained by the phase
field method which are not global minimizer. As expected,
the optimal curves are similar but the convex solution is bet-
ter from the point of view of the constraint satisfaction and
of the cost functional on simple examples (see columns 4

to 6 of Tables 1 and 2). More surprisingly, the phase field
approach is able to produce a very stable approximation
of optimal curve: the l2 norm of the difference (see the
third columns) of the two support functions is always less
than 3%. This good behavior illustrates that the phase field
approach under the stiff constraints of the interior and exte-
rior domains is able to avoid most of non-optimal stationary
curves. Of course the price to pay is a small loss of precision
with respect to the satisfaction of the constraints. The last
examples of Table 3 have to be considered as difficult prob-
lems since the radius of curvature of the constraints is very
irregular. As a consequence, both algorithms are not able to
identify completely admissible sets. Nevertheless, the phase
field approach is still able to produce in some cases smooth
curves with smaller energies than those produced by the con-
vex method. Those bad results of the convex approach are
explained by the fact that the interior/projected conjugate
gradient algorithm spends all its computational time to try
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Table 1 Phase field versus convex regularization, first set of test cases. epf stands for
max(|hin−hpf |+,|hpf −hext |+)

‖hin‖∞ and ec is defined in an analogous
way

Shape min |hin−hext |
‖hin‖∞

‖hpf −hc‖2
‖hc‖2

epf ec
Vc−Vpf

Vc

Circle fu (r = 12) 0.006723 0.008741 0.001688 0.000000 −0.012655

Circle fu (r = 24) 0.002773 0.004000 0.002177 0.000000 −0.005416

Ellipse fu a = 12, b = 4, θ = 0 0.006531 0.030307 0.020758 0.000012 −0.005923

Ellipse fu a = 12, b = 4, θ = 10 0.007899 0.029439 0.021499 0.000000 −0.004685

Ellipse fu a = 12, b = 4, θ = 20 0.007924 0.027019 0.016129 0.000002 −0.022688

Ellipse fu a = 12, b = 4, θ = 30 0.006707 0.022180 0.018000 0.000000 −0.008816

Ellipse fu a = 12, b = 4, θ = 40 0.005446 0.024468 0.017500 0.000000 −0.005152

Ellipse fu a = 12, b = 4, θ = 50 0.005543 0.025622 0.018817 0.000001 −0.004174

Ellipse fu a = 12, b = 4, θ = 60 0.007812 0.024553 0.013515 0.000000 −0.012134

Ellipse fu a = 12, b = 4, θ = 70 0.007703 0.027735 0.020931 0.000000 −0.002501

Ellipse fu a = 12, b = 4, θ = 80 0.005296 0.027606 0.020148 0.000004 −0.008771

Ellipse fu a = 24, b = 8, θ = 0 0.002090 0.014748 0.010894 0.000000 −0.003076

Ellipse fu a = 24, b = 8, θ = 10 0.001638 0.014034 0.010657 0.000003 −0.002341

Ellipse fu a = 24, b = 8, θ = 20 0.002265 0.013688 0.009783 0.000000 0.003265

Ellipse fu a = 24, b = 8, θ = 30 0.003278 0.013673 0.012081 0.000000 0.006929

Ellipse fu a = 24, b = 8, θ = 40 0.002229 0.010485 0.009391 0.000001 0.005319

Ellipse fu a = 24, b = 8, θ = 50 0.001800 0.009980 0.007984 0.000003 0.000017

Ellipse fu a = 24, b = 8, θ = 60 0.002443 0.010565 0.010077 0.000000 0.008624

Ellipse fu a = 24, b = 8, θ = 70 0.002150 0.014058 0.011562 0.000000 0.007921

Ellipse fu a = 24, b = 8, θ = 80 0.002341 0.013020 0.009313 0.000000 0.002433

Table 2 Phase field versus convex regularization, second set of test cases. epf stands for
max(|hin−hpf |+,|hpf −hext |+)

‖hin‖∞ and ec is defined in an
analogous way.

Shape min |hin−hext |‖hin‖∞
‖hpf −hc‖2

‖hc‖2
epf ec

Vc−Vpf

Vc

Circle (r = 12) 0.006705 0.010434 0.001678 0.000001 −0.014405

Circle (r = 24) 0.002319 0.005601 0.001745 0.000001 −0.007997

Ellipse a = 12, b = 4, θ = 0 0.004563 0.028657 0.020249 0.000027 0.000086

Ellipse a = 12, b = 4, θ = 10 0.007800 0.029209 0.021227 0.000005 −0.007934

Ellipse a = 12, b = 4, θ = 20 0.010032 0.028470 0.018518 0.000000 −0.002961

Ellipse a = 12, b = 4, θ = 30 0.005530 0.024014 0.017747 0.000000 −0.003305

Ellipse a = 12, b = 4, θ = 40 0.012394 0.025144 0.013271 0.000000 −0.014452

Ellipse a = 12, b = 4, θ = 50 0.012394 0.025145 0.013183 0.000000 −0.014767

Ellipse a = 12, b = 4, θ = 60 0.005530 0.024028 0.017502 0.000000 −0.004026

Ellipse a = 12, b = 4, θ = 70 0.010029 0.028594 0.018565 0.000000 −0.002791

Ellipse a = 12, b = 4, θ = 80 0.007796 0.029245 0.021235 0.000000 −0.007462

Ellipse a = 24, b = 8, θ = 0 0.001506 0.014545 0.010824 0.000043 −0.003217

Ellipse a = 24, b = 8, θ = 10 0.003226 0.014552 0.010127 0.000000 −0.004513

Ellipse a = 24, b = 8, θ = 20 0.002676 0.014434 0.010861 0.000000 −0.002475

Ellipse a = 24, b = 8, θ = 30 0.002082 0.014245 0.008439 0.000005 −0.003455

Ellipse a = 24, b = 8, θ = 40 0.002829 0.011887 0.007807 0.000000 −0.003064

Ellipse a = 24, b = 8, θ = 50 0.002826 0.011848 0.007825 0.000000 −0.002690

Ellipse a = 24, b = 8, θ = 60 0.002082 0.014284 0.008395 0.000004 −0.003454

Ellipse a = 24, b = 8, θ = 70 0.002675 0.014606 0.010919 0.000000 −0.002311

Ellipse a = 24, b = 8, θ = 80 0.003229 0.014581 0.010129 0.000002 −0.004325
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Table 3 Phase field versus convex regularization, third set of test cases. epf stands for
max(|hin−hpf |+,|hpf −hext |+)

‖hin‖∞ and ec is defined in an analogous
way

Shape min |hin−hext |‖hin‖∞
‖hpf −hc‖2

‖hc‖2
epf ec

Vc−Vpf

Vc

Triangle R = 12, θ = 10 0.003513 0.023859 0.019938 0.000851 0.003610

Triangle R = 12, θ = 20 0.003739 0.024980 0.021457 0.000575 0.004298

Triangle R = 12, θ = 40 0.003482 0.029507 0.019860 0.000418 0.013267

Triangle R = 12, θ = 50 0.003198 0.022848 0.020171 0.000318 0.001871

Triangle R = 12, θ = 70 0.003383 0.026008 0.022031 0.000445 0.003445

Triangle R = 12, θ = 80 0.003822 0.032327 0.020775 0.000500 0.012414

Triangle R = 24, θ = 10 0.000901 0.011796 0.009539 0.000675 0.002337

Triangle R = 24, θ = 20 0.000445 0.012118 0.010628 0.000880 0.003215

Triangle R = 24, θ = 40 0.000425 0.017871 0.010507 0.000967 0.011385

Pentagon R = 12, θ = 0 0.003317 0.023734 0.019024 0.000292 −0.000549

Pentagon R = 12, θ = 10 0.004275 0.024006 0.018680 0.000190 −0.001132

Pentagon R = 12, θ = 20 0.002442 0.023517 0.019214 0.000229 −0.000115

Pentagon R = 12, θ = 30 0.004057 0.041961 0.019036 0.000766 0.019678

Pentagon R = 12, θ = 40 0.002520 0.025316 0.019623 0.000503 0.001771

Pentagon R = 12, θ = 50 0.002517 0.025165 0.019796 0.000613 0.001452

Pentagon R = 12, θ = 60 0.002652 0.023625 0.019341 0.000494 −0.000542

Pentagon R = 12, θ = 70 0.002438 0.023528 0.019051 0.000458 −0.000473

Pentagon R = 12, θ = 80 0.004280 0.024005 0.018675 0.000179 −0.001081

Pentagon R = 24, θ = 0 0.001083 0.011721 0.009866 0.000513 0.000152

Pentagon R = 24, θ = 10 0.000791 0.010724 0.008896 0.000358 0.000264

Pentagon R = 24, θ = 20 0.001215 0.014767 0.009490 0.000389 0.003003

Pentagon R = 24, θ = 30 0.000877 0.011685 0.009850 0.000562 0.000629

Pentagon R = 24, θ = 40 0.001001 0.014500 0.010176 0.000128 0.003537

Pentagon R = 24, θ = 50 0.000999 0.011346 0.010462 0.000250 0.000054

Pentagon R = 24, θ = 60 0.000869 0.011748 0.010133 0.000729 0.000528

Pentagon R = 24, θ = 70 0.001204 0.012001 0.009736 0.000437 −0.000670

Pentagon R = 24, θ = 80 0.000786 0.011108 0.008962 0.000373 −0.000211

to satisfy the constraints. Once again, those stiff test cases
illustrate the robustness of the phase field regularization.

5.3 Numeric Evaluation of the Curvature Estimators

We compared numerically the closeness of the curvature
fields extracted by the GMC method and the phase field
method on various shapes at two different resolutions. The
error measures are summed up on Table 4. Plots of cur-
vature fields as well as the phase field reconstruction are
given on Figs. 5 and 6. We also included the curvature field
of the Euclidean shape before digitization. Notice that the
Euclidean shape is generally not the optimal shape for mini-
mizing Willmore energy. Nevertheless they share many fea-
tures such as smoothness and number of position of ex-
tremal points. Moreover, by definition of the digital con-
straints those shapes are geometrically close.

Regarding the evaluation of curvature fields obtained
from GMC method and the phase field method we first no-

tice that extremal points are consistently localized with re-
spect to the original shape. Curvature fields of both methods
are numerically close for disks and ellipses and get closer
as the resolution gets finer. On the other hand the curva-
ture field obtained by the phase field approach is far away
from the original shape when considering polygons. This
bad behavior is related to the fact that the Willmore energy is
not relevant for extracting shapes with non smooth curvature
field. In this context the GMC algorithm has a more natural
output because it has a pre-processing which locates linear
parts of the boundary. This avoids spurious inflexion points
which have been observed in phase field reconstruction (see
Fig. 6 bottom row). A side effect of GMC method is that it
preserves convexity.

From a computational cost point of view, the three meth-
ods are not equivalent. The GMC method is the fastest (at
most 0.1 second for the presented experiments). The phase
field method requires computations on grids much finer than
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the digital shape to enforce the constraints. Therefore com-
putation times take several minutes.

6 Conclusion

We have presented three different methods to address the
regularization of digital contours. They are based on the
minimization of Willmore energy with specific constraints.
The first method limited to convex sets is a reliable numeric
scheme for solving this problem and was therefore used as a
ground truth for the others. Although the phase field method
may fall into local minima it appears to be a very good ap-
proximation of optimal shapes. Moreover, the latter method
is much more flexible and is adapted to real world data. Fi-
nally, we have compared the phase field method with the
GMC method, which only approximates the minimization
problem. Experiments have shown that the GMC method
gives a good approximation of the curvature field obtained
by the phase field reconstruction, in the case of smooth
shapes digitization. For shapes containing polygonal parts,
the GMC approach gives more natural results since it re-
laxes in these parts the curvature regularity imposed by the
Willmore model.

Two perspectives to this work seem very promising. First
of all, the constrained phase field formulation is naturally
extensible to 3D shapes. We have started to work on this
extension, as displayed on Fig. 4. An interesting point is
that the convergence is fast (only a few iterations are nec-
essary). Secondly, we would like to mix the pre-processing
step of GMC method in phase field reconstruction. This pre-
processing could thus detect linear parts and vertices of the
original shape, and then marks them specifically so that they
are treated differently during the phase field reconstruction.
By this way, angular features of shapes could be preserved
in the elsewhere smooth reconstruction.

Appendix A: Proof of �-convergence for the Penalized
Perimeter

In this appendix, we establish the �-convergence of
Pε,�int,�ext to cWP�int,�ext .

Definition A.1 Let X be a Banach space. A sequence Fε :
X → R̄ is said to �-converge to F : X → R̄ in X if for all u

in X,

• If uε → u, then

F(u) ≤ lim infFε(uε).

• There exists a sequence uε → u such as

lim supFε(uε) ≤ F(u).

Fig. 4 Phase field reconstruction of 3D digital rabbit

In this paper, we take X = L1(Rd) and introduce a lower
semi-continuous extension of P�int,�ext in L1(Rd). For all
u ∈ L1(Rd), we then define P�int,�ext (u) as follow

P�int,�ext (u) =

⎧

⎪
⎨

⎪
⎩

|Du|(Rd) for u = χ� and

�int ⊂ � ⊂ �ext,

+∞ otherwise,

where

|Du|(Rd) = sup

{∫

Rd

u ÷ g dx ; g ∈ D(Rd ,R
d)

}

,

and D(Rd ,R
d) denotes the set of C∞(Rd ,R

d) functions
with compact support on R

d . Note that when u ∈ W 1,1(Rd),
|Du| coincides with the L1-norm of ∇u and if u = χ�,
then |Du| coincides with the perimeter of �. Moreover
v → |Dv|(Rd) is lower semi-continuous in L1(Rd) topol-
ogy.

Theorem A.2 Assume that �int and �ext are two given
smooth and closed subsets of R

d such as �int ⊂ �ext and
dist(∂�int, ∂�ext) > 0. Assume that W is a positive and con-
tinuous double-well potential with wells located at 0 and 1
such that W(s) = 0 if and only if s ∈ {0,1}. Assume also
that Wint and Wext are two continuous potentials satisfy-
ing assumption (H1) defined in Sect. 4. Then, the sequence
Pε,�int,�ext �-converges to cWP�int,�ext in L1(R

d) topology.



J Math Imaging Vis (2011) 40: 214–229 225

Fig. 5 (Color online) Digital shapes (left: contour as white digital
path), phase field reconstruction (left: red curve) and comparison of
curvature estimations (right). Top row: Circle fu, r = 12. Middle row:

Ellipse, a = 12, b = 4, phase θ = 30. Bottom row: Ellipse (twice finer
resolution), a = 12, b = 8, phase θ = 50
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Fig. 6 (Color online) Digital shapes (left: contour as white digital
path), phase field reconstruction (left: red curve) and comparison of
curvature estimations (right). Top row: Flower with three petals (fine

resolution), outer radius R = 11, inner radius r = 4, phase , θ = 30.
Middle row: Flower with five petals (fine resolution), R = 16, r = 12,
θ = 10. Bottom row: Triangle, r = 12, θ = 50
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Table 4 Normalized error measures in L2 and L∞ norms between GMC curvature estimation (κgmc) and curvature field of phase field recon-
struction (κpf ). Tests are made on various shapes obtained by digitization (disk and ellipses, flowers with petals, polygons)

Shape Coarse resolution Fine resolution
‖κgmc−κpf ‖2

‖κpf ‖2

‖κgmc−κpf ‖∞
‖κpf ‖∞

‖κgmc−κpf ‖2
‖κpf ‖2

‖κgmc−κpf ‖∞
‖κpf ‖∞

Circle fu (r = 12) 0.0442592 0.31289 0.00401175 0.169518

Circle (r = 12) 0.0121884 0.220581 0.00216341 0.115145

Ellipse a = 12, b = 4, θ = 0 1.47904 2.69682 0.370295 1.43554

Ellipse a = 12, b = 4, θ = 30 0.21861 0.645565 0.0793507 0.340042

Ellipse a = 12, b = 4, θ = 50 0.105899 0.42965 0.27194 0.726569

Ellipse a = 12, b = 8, θ = 0 0.100187 0.431556 0.0509497 0.350009

Ellipse a = 12, b = 8, θ = 30 0.0413763 0.425344 0.0815066 0.386105

Ellipse a = 12, b = 8, θ = 50 0.0610666 0.278151 0.0541655 0.409225

Flower 3 R = 11, r = 4, θ = 0 0.349944 0.850607 0.139678 0.555303

Flower 3 R = 11, r = 4, θ = 30 0.5012 1.30817 0.570592 1.3973

Flower 3 R = 11, r = 4, θ = 50 0.566741 1.08319 0.942863 2.17071

Flower 5 R = 16, r = 12, θ = 10 0.278245 0.742139 0.428769 2.69516

Flower 5 R = 16, r = 12, θ = 40 0.506603 1.17315 0.347179 1.78096

Pentagon R = 12, θ = 0 0.393705 0.599844 0.847753 1.49237

Pentagon R = 12, θ = 30 0.243533 0.807363 1.49061 2.1423

Triangle R = 12, θ = 0 0.916627 2.0024 2.79765 3.77142

Triangle R = 12, θ = 50 1.44723 1.93351 3.15181 3.00341

Proof

(i) Liminf inequality:

Let (uε) be a sequence of functions converging to u in
L1(Rd). Let us prove that

P�int,�ext (u) ≤ lim infPε,�int,�ext (uε).

As Pε,�int,�ext ≥ 0, it is not restrictive to assume that the
lim inf of Pε,�int,�ext (uε) is finite. Thus, we can extract a
subsequence (uεh

) such that

lim
h→∞Pεh,�int,�ext (uεh

) = lim inf
ε→0

Pε,�int,�ext (uε) ∈ R.

Since

⎧

⎪
⎨

⎪
⎩

∫

�int
Wint(uεh

)dx ≤ εhPεh,�int,�ext (uεh
),

∫

Rd\�ext
Wext(uεh

)dx ≤ εhPεh,�int,�ext (uεh
),

∫

�ext\�int
W(uεh

)dx ≤ εhPεh,�int,�ext (uεh
),

Fatou’s Lemma implies that
∫

�int
Wint(u)dx = 0,

∫

Rd\�ext
Wext(u)dx = 0 and

∫

�ext\�int
W(u)dx = 0. By as-

sumptions on potentials W , Wint and Wext, it appears that

u(x) ∈

⎧

⎪
⎨

⎪
⎩

{1} a.e. in �int,

{0} a.e. in R
d \ �ext,

{0,1} a.e. in �ext \ �int.

Hence, up to some negligible set, u is a characteristic func-
tion χ� for some Borel set � ⊂ R

d satisfying �int ⊂ � ⊂
�ext. Using Cauchy’s inequality, it holds

Pε,�int,�ext (uεh
)

≥
∫

Rd

[

εh|∇uεh
|2

2
+ 1

εh

W(uεh
)

]

dx

because Wint ≥ W and Wext ≥ W

≥
∫

Rd

[

εh|∇uεh
|2

2
+ 1

εh

W̃ (uεh
)

]

dx with W̃ (s)

= min{W(s), sup
s∈[0,1]

W(s)}

≥
∫

Rd

√

2W̃ (uεh
)|∇uh|dx =

∫

Rd

|∇[φ(uεh
)]|dx

= |D[φ(uεh
)]|(Rd),

where φ(s) = ∫ s

0

√

2W̃ (t)dt . Since φ is a Lipschitz func-

tion (because W̃ is bounded), φ(uε) converges in L1(Rd) to
φ(u). Using the lower semicontinuity of v → |Dv|(Rd), we
obtain

lim
h→+∞Pεh,�int,�ext (uεh

)

≥ lim inf
h→+∞|Dφ(uεh

)|(Rd) ≥ |Dφ(u)|(Rd).
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As φ(u) = φ(χ�) = cWχ� = cWu, we finally obtain the
lim inf inequality.

(ii) Limsup inequality:

Let u be a function in L1(R
d). We prove below the existence

of a sequence (uε) converging to u such as

lim supPε,�int,�ext (uε) ≤ P�int,�ext (u).

We can assume that P�int,�ext (u) is finite, this means that
u = χ� for some bounded open set � satisfying �int ⊂ � ⊂
�ext with smooth boundary. Introduce the sequence

uε(x) = q

(

dist(x,�)

ε

)

,

where the profile q is defined by (13). Like in Sect. 4,
dist(x,�) denotes the signed distance function to the set �.
Note that by the definition of q , uε converges to u. As q is
clearly decreasing and q(0) = 1/2, it follows that

• The function dist(x,�) is negative on �int, thus uε(x) ≥
1
2 on �int and then

Wε,�int,�ext (uε(x), x) = Wint(uε(x))

= W(uε(x)), for all x ∈ �int,

• The function dist(x,�) is positive on R
d \ �ext, thus

uε(x) ≤ 1
2 on R

d \ �ext and

Wε,�int,�ext (uε(x), x)

= Wext(uε(x))

= W(uε(x)), for all x ∈ R
d \ �ext.

Hence, by co-area formula, we estimate

Pε,�int,�ext (uε)

=
∫

Rd

[

ε|∇uε |2
2

+ 1

ε
W(uε)

]

dx

= 1

ε

∫

Rd

[

q ′(d(x,�)/ε)2

2
+ W(q(d(x,�)/ε))

]

dx

= 1

ε

∫

R

g(s)

[

q ′(s/ε)2

2
+ W(q(s/ε))

]

ds

=
∫

R

g(εt)

[

q ′(t)2

2
+ W(q(t))

]

dt

where g(s) = |Dχ{d≤s}|(Rd). By the smoothness of ∂�,
g(εt) converges to

g(0) = |Dχdist(x,�)≤0|(Rd)

= |Dχ�|(Rd) = P�int,�ext (u),

and so

lim sup
ε→0

Jε,�int,�ext (uε)

≤ P�int,�ext (u)

∫ +∞

−∞

[

1

2
q ′(s)2 + W(q(s)) ds

]

.

The proof is closed by the following equality

∫ +∞

−∞

[

1

2
q ′(s)2 + W(q(s))

]

ds

=
∫ 1

0

√

2W(s)ds = cW . �
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