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†LaBRI CNRS UMR 5800Université Bordeaux 1351, ours de la Libération33405 Talene edex{braure,lahaud}�labri.fr ‡GreyC CNRS UMR 6072Équipe Image - ENSICAEN6, Boulevard du Maréhal Juin14050 CAEN Cedex - Frane{lu.brun}�grey.ensiaen.frAbstrat. This paper de�nes the basis of a new hierarhial segmen-tation framework based on an energy minimization sheme. This newframework is based on two formal tools. First, a ombinatorial pyramidenodes e�iently a hierarhy of partitions. Seondly, disrete geomet-ri estimators measure preisely some important geometri parametersof the regions. These measures ombined with photometrial and topo-logial features of the partition allow to design energy terms based ondisrete measures. Our segmentation framework exploits these energiesto build a pyramid of image partitions with a minimization sheme. Someexperiments illustrating our framework are shown and disussed.1 IntrodutionThe onvergene of energy minimization and hierarhial segmentation algo-rithms provides a rih framework for image segmentation. This framework isbased on an objetive riterion, alled energy, whose minimization de�nes asalient partition aording to a given problem. The energy of a partition is gen-erally deomposed by summation over eah region R, where the energy is aweighted sum of two terms E(R) = Eimg(R) + νEreg(R). Eimg may be under-stood as a �t to the data within the region while Ereg orresponds to a regulariza-tion term. The parameter ν de�nes the respetive weights of the two terms. TheMumford-Shah energy is a lassial instane of this approah [1℄. Suh an equa-tion may also be interpreted within the Minimum Desription Length (MDL)framework [2℄, where the two energies Eimg and Ereg represent respetively theenoding osts of the photometry and the geometry of a region.Several methods have been proposed in order to obtain a partition minimiz-ing an energy. These methods inlude the level set approah [1℄, graph uts [3℄and the methods based on a region merging sheme [4�7℄. The de�nition of ameaningful segmentation using an energy minimization framework and a mergesheme supposes �rst to de�ne a merge strategy. If the parameter ν is �xed,a near optimal strategy onsists in merging at eah step the two regions, themerging of whih indues the greatest derease of the energy until any mergewould inrease the energy. The obtained partition is said to be 2 normal at the



2 Martin Braure de Calignon†, Lu Brun‡, and Jaques-Olivier Lahaud†sale ν [4, 5℄. An alternative strategy [6℄ onsists in merging at eah step thetwo regions whose union would belong to the 2 normal partition of lowest sale.This redution framework avoids the need to selet a vetor of ν parametersenoding a priori the di�erent sales of interest. However, previous works [4�6℄were based on a sequene of merge operations ombined with a stopping riterion(number of regions, maximal value of ν. . . ). Guigues et. al. [7℄ expliitly enodethe hierarhy of partitions using a redution sheme similar to [6℄ but uses thehierarhy in order to build for any value of ν, the optimal partition whih may bede�ned from the hierarhy. Moreover, instead of starting from the grid of pixelslike [6℄, their initial partition is an over partition of the image. It presents twoadvantages. First, the initial over segmented partition allows to ompute reliablestatistis on regions. Seondly, it restrits the set of possible partitions and thusredues the risk to be trapped into a loal minima.The seond problem that should be addressed by a segmentation algorithm isthe orret design of the energy terms. For instane, the lassial Mumford-Shahenergy simply ombines the squared error of eah region together with the totallength of the partition boundaries. However, as shown by several authors [7℄,more omplex models (both geometrial and photometrial) may handle �nerde�nitions of salient partitions. Their design requires to �t geometrial modelsonto regions. An e�ient aess to the set of boundaries of eah region and totheir geometry is thus ompulsory. However, lassial hierarhial segmentationframeworks are not adequate for this task. Adaptive pyramids based on graph [8℄do not provide a 1-1 orrespondene between the edges of the graphs and thegeometrial boundaries: reonstruting the geometry of a region is then triky.Dual graphs [9℄ behave better for this task but the expliit enoding of all reduedgraphs restrits the number of merge steps.This paper provides a new framework that addresses the design of new energyterms based on geometrial and photometrial features. The stak of suessivelyredued partitions is enoded using a ombinatorial pyramid [10℄. A very �negranularity for the hierarhy is then ahieved sine a new level of the pyramidis reated for eah merging of two regions. Geometrial features are omputedon eah partition of the hierarhy using disrete geometri estimators of normaland length. This framework o�ers then a ompat and e�ient enoding of thehierarhy together with an e�ient aess to the geometrial and topologialproperties of the partition. It ame thus as a natural omplement to methodssearhing for optimal partitions within a hierarhy. The paper is strutured asfollows. We present in Setion 2 the ombinatorial pyramid model. The appli-ation of this model to ompute geometrial features on regions using disretegeometri estimators is presented in Setion 3. We then present in Setion 4 oneenergy based on disrete estimators together with some experiments.2 Combinatorial PyramidsOur approah is based on ombinatorial maps [11℄. A ombinatorial map maybe seen as a planar graph enoding expliitly the orientation of edges around a
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K1 = α∗(1, 2, 10, 11, 12, 6). The redued ombinatorial map () is obtained by theremoval of the empty self loops α∗(4) and the removal kernel of empty double edges(RKEDE) K3 = α∗(13, 14, 15, 19, 18, 22) ∪ {24,−16, 17,−20, 21,−23, 3,−5}. In orderto avoid overloading of images, only positive darts are shown in (a) and (b).given vertex. To do so, eah edge of a planar graph is split into two half-edgesalled darts (e.g. darts 16 and −24 in Fig. 1). A ombinatorial map is formallyde�ned by a triplet G = (D, σ, α) where D represents the set of darts and σ is apermutation on D whose yles orrespond to the sequene of darts enounteredwhen turning ounter-lokwise around eah vertex. Finally α is an involutionon D whih maps eah of the two darts of one edge to the other one (e.g. α maps
16 to −24 and −24 to 16 in Fig 1). The yles of α and σ ontaining a dart dwill be respetively denoted by α∗(d) and σ∗(d).Given a ombinatorial map G = (D, σ, α), its dual map is de�ned by G =
(D, ϕ, α) with ϕ = σ ◦ α. The yles of permutation ϕ enode the faes of theombinatorial map and may be interpreted as the sequene of darts enounteredwhen turning lokwise around a fae. The yle of ϕ ontaining a dart d willbe denoted by ϕ∗(d).2.1 Enoding the image grid with ombinatorial mapCombinatorial maps an also ode the low level geometry of image pixels. Indeed,Fig. 1a desribes a dual ombinatorial map G0 = (D0, ϕ0, α0) enoding a 3 × 34-onneted planar sampling grid. The ϕ, α and σ yles of eah dart maybe respetively understood as elements of dimensions 0, 1 and 2 and formallyassoiated to a 2D ellular omplex [10℄. More preisely, eah α0 yle may beassoiated to a linel (sometimes also alled rak or surfel) between two pixels.Eah of the two darts of an α0 yle orresponds to an orientation along thelinel. For example, the yle α∗

0(1) = (1,−1) is assoiated to the linel enodingthe right border of the top left pixel of the 3 × 3 grid (Fig. 1a). Darts 1 and
−1 de�ne respetively a bottom to top and top to bottom orientation along thelinel.2.2 Constrution of Combinatorial PyramidsA ombinatorial pyramid is de�ned by an initial ombinatorial map suessivelyredued by a sequene of ontration or removal operations whih are formal



4 Martin Braure de Calignon†, Lu Brun‡, and Jaques-Olivier Lahaud†translations of region merges. Contration operations are enoded by ontrationkernels (CK). These kernels, de�ned as a forest of the urrent ombinatorial map,may however reate redundant edges suh as empty-self loops and double edges.Empty self loops (edge α∗
1(4) in Fig. 1b) may be interpreted as region innerboundaries and are removed after the ontration step. The remaining redundantedges, alled double edges, belong to degree 2 verties in G (e.g. ϕ∗

1(13), ϕ∗
1(14),

ϕ∗
1(15)) in Fig. 1b) and are removed using a removal kernel of empty doubleedges (RKEDE) whih ontains all darts inident to a degree 2 dual vertex.Further details about the onstrution sheme of a ombinatorial pyramid maybe found in [10℄.2.3 Embedding of region boundariesAs mentioned in Setion 2.1, if the initial ombinatorial map enodes a planarsampling grid, the geometrial embedding of eah initial dart orresponds toan oriented linel. Moreover, eah dart of a redued map that is not a self loopenodes a onneted boundary between two regions. The embedding of suh aboundary may be retrieved from the embedding of the darts of the initial map

G0. Let us onsider the redued ombinatorial map Gi = (Di, σi, αi) de�ned atlevel i and one dart d ∈ Di whih is not a self loop. The sequene d1 . . . , dn ofinitial darts enoding the embedding of the dart d is obtained using the followingrelation:
d1 = d , dj+1 = ϕ0 ◦ · · · ◦ ϕ0︸ ︷︷ ︸

mj times (α0(dj)) (1)where G0 = (D0, ϕ0, α0) is the dual G0 and mj is the smallest integer q suhthat ϕq
0(α0(dj)) survives at level i or belongs to some former RKEDE. The dart

dn is the �rst dart de�ned by Eq. (1) whih survives up to level i. This dartalso satis�es α0(dn) = αi(d) by onstrution of the reeptive �elds. Note thatthe tests performed on ϕq
0(α0(dj)), q ∈ {1, . . . , mj} to determine if it is equalto dj+1 or dn are performed in onstant time using the impliit enoding ofombinatorial pyramids.Let us onsider the dart 16 in Fig. 1. This dart enodes the border betweenthe bakground and the �rst row of the 3 × 3 grid enoded by the σ3 yle

σ∗
3(16) = (16, 7, 8) of G3. The sequene of initial darts enoding the boundaryof the dart 16 is retrieved using Eq. (1) and is equal to: 16.15.14.13.24 (Fig. 1b).Sine eah initial dart is assoiated to an oriented linel, one may assoiate asequene of Freeman's odes to eah sequene of initial darts (Fig. 1b) and thusto eah dart of a redued ombinatorial map Gi. The sequene of Freeman's odesassoiated to a dart d is alled the segment assoiated to d (e.g.: the segmentassoiated to the dart 16 is sequene s16 = 1.2.2.2.3).
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5 6Fig. 2. The entral white region σ∗(1) (a) ontains several subregions. Its boundaryis thus split into several onneted omponents onneted by bridges in G (b). Theseedges orrespond to self loops in G ().3 Disrete geometry over a partitionAs mentioned in Setion 2, eah edge (d, αi(d)) of a partition G that is nota self loop enodes a onneted boundary between two regions and is alledseparating. On the other hand, a self loop orresponds to a bridge in the dualombinatorial map and is haraterized by αi(d) ∈ σ∗

i (d) (e.g. edge (3,−3) or
(5,−5) in Fig. 2b). Suh edges, alled �tive,either onnet the outer boundary to some inner boundary (e.g. edge (3,−3)in Fig. 2) or onnet two inner boundaries (edge (5,−5) in Fig. 2).Eah separating edge is embedded as a 4-onneted digital path, inluded inthe interpixel digital plane (Setion 2.3 and [10℄).When estimating the geometry of the boundary of the region, �tive edges donot play any role. More preisely the onatenation of only the separating edgesde�nes a set of 4-onneted digital loops. Eah of these loops is either the outerboundary of the region or one of its inner boundaries. Given an initial dart dbelonging to a separating edge, Algorithm 1 extrats a boundary between region
σ∗(d) and its omplement (setting Lin = σ∗(d)) or between regions σ∗(d) and
σ∗(d′) and their omplement (setting Lin = σ∗(d) ∪ σ∗(d′)). Its priniple is tofollow the boundary with σ exept that it skips �tive edges and edges in-between
σ∗(d) and σ∗(d′). This method for traking a boundary is easily understood onFig. 2b, where for instane the algorithm traks from dart 1, then 2 = σ(1),3 is skipped sine −3 ∈ σ∗(1), then 8 = σ(−3) and terminates on 1 = σ(8)again. Extrating all the boundaries of a region is done in a similar way. Allthese algorithms an be implemented with a omplexity linear with the numberof boundary linels.3.1 Geometry with digital straight segmentsWe may now examine how geometri quantities an be estimated on a losed4-onneted digital ontour C, whih is some boundary of a region or two ad-jaent regions (omputed as in the previous paragraph). We restrit ourselvesto pure disrete geometry tools based on digital straight segment (DSS) reogni-tion. Several equivalent de�nitions of DSS exist together with several lasses ofalgorithms to reognize them on digital urves (see for instane [12℄ for a reent



6 Martin Braure de Calignon†, Lu Brun‡, and Jaques-Olivier Lahaud†Algorithm 1 Algorithm to visit all the linels of the digital boundary enirlingregion(s) spei�ed by their darts Lin and ontaining the dart d.1 Funtion Map::boundary( dart d, darts Lin ) : Freeman hainEnsure: Return a sequene of Freeman's odes that is a 4-onneted loop.Require: d 6∈ Lin2 list C ← ∅, dart b ←drepeat
C.append(sb)
b ←σ(b)while α(b) ∈ Lin do {Skip �tive or interior edges}

b ←ϕ(b)end whileuntil b = dreturn Csurvey). We hose here to present brie�y the arithmeti point of view of digitallines, whih leads to rather simple and e�ient algorithms [13, 14℄.The set of points (x, y) of the digital plane verifying µ ≤ ax−by < µ+|a|+|b|,with a, b and µ integer numbers, is alled the standard line with slope a/b andshift µ. A standard line is always 4-onneted. A sequene of onseutive points
Ci,j indexed from i to j of the digital urve C is a digital straight segment (DSS)i� there exists a standard line (a, b, µ) ontaining them. The one with smallest
a + b determines its harateristis, in partiular its slope a/b. Any DSS Z thusde�nes an angle θ(Z) between its arrying standard line and the x-axis (in [0; 2π[sine a DSS is oriented), alled the diretion of Z.The prediate �Ci,j is a DSS� is denoted by S(i, j). Inremental algorithmsexist to reognize a digital straight segment on a urve and to extrat its har-ateristis [13℄. Therefore deiding S(i, j + 1) or S(i − 1, j) from S(i, j) are
O(1) operations. Any DSS Ci,j is alled a maximal segment i� ¬S(i, j + 1) and
¬S(i−1, j). Maximal segments are thus the inextensible DSS of the urve (Fig. 3,left). Note that the set of all maximal segments of a urve an be omputed intime linear with the number of urve points [14℄.3.2 Tangent, normal and length estimationSeveral tangent estimators based on DSS reognition have been proposed. Wepropose to use the λ-Maximal Segment Tangent estimator (λ-MST) to approahthe tangent diretion at any point of the digital urve [15℄. It was indeed shownto give good approximations even at oarse sale, to be rather independent fromrotations and to be asymptotially onvergent.Fig. 3, right, gives the essential idea of this tangent estimator. Given a point,the diretion θi of every maximal segment ontaining it is evaluated. The rela-tive position ei of the point within the maximal segment is also omputed. The
λ-MST tangent diretion θ̂ is some weighted ombination of the preeding pa-rameters: θ̂ = (

∑
i λ(ei)θi)/(

∑
i λ(ei)). In our experiments, the mapping λ was
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θ1 = 37◦ θ2 = 28◦ θ3 = 19◦ θ4 = 12◦Fig. 3. Left: every maximal segment along this ontour is drawn as its retangularbounding box. Right: λ-Maximal Segment Tangent estimation at a given point.de�ned as the triangle funtion taking base value 0 at 0 and 1, and peak value1 at 1
2 . For further details, see [15℄.The experimental average number of maximal segments per linel is between3 and 4. Therefore omputing the λ-MST diretion is not ostly and is a O(1)operation on average. This tehnique of tangent estimation is easily extendedto any real urvilinear absissa along the digital ontour. The tangent is thusde�ned at any linel, taking half integer absissas.The estimation of the normal vetor at Ck is then simply the vetor n̂(k) =

(− sin(θ̂(k)), cos(θ̂(k))). The elementary length l̂(k, k + 1; C) of a linel Ck,k+1 isde�ned as | cos(θ̂(k + 0.5))| for horizontal linels and | sin(θ̂(k + 0.5))| for vertiallinels. It orresponds to an estimation of the length of a unit displaement alongthe digital urve. The length of C is estimated by simple summation of theelementary length of its linels. This method of length evaluation was reported togive very good experimental results [16℄. If Cb is boundary(b, σ∗(b)) as returnedby Algorithm 1, then its length is L̂(b; G) =
∑|Cb|

k=1 l̂(k, k + 1; Cb). The totalperimeter P̂er(R(σ∗(b)); G) of the region σ∗(b) is the sum of the length of eahof its boundaries.4 Energy of a partition and pyramidal segmentationThe geometrial features (normal, perimeter) de�ned in Setion 3 may be om-puted on eah region of a partition to provide di�erent measures of its geometri-al harateristis. Suh measures may then be inorporated into a hierarhialsegmentation algorithm based on an energy minimization sheme (Setion 1).Suh energy balanes two terms: the goodness of �t term and a regularizationterm whih penalizes unlikely or omplex models. The energy of a partition en-oded by the map G is simply alled the energy of the ombinatorial map G andis formally de�ned as follows: Let G = (D, σ, α) be a ombinatorial map with a
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(a) (b) () (d)Fig. 4. In�uene of length penalization: (a) image Girl, (b) one level of the pyramidwith l̂(k, k+1; C) = 1, () same level of a pyramid built using disrete length estimators.All the boundaries of the pyramid whih ontains () are superimposed on (d). Thedarkest boundaries are those who survive at the highest levels.geometrial embedding in the digital grid and an input image I over this grid.Let Dσ be the set of σ-yles of D. The energy of the ombinatorial map G is

E(G) =
∑

σ∗(d)∈Dσ

E(σ∗(d)), (2)with, E(σ∗(d)) = Eimg(σ∗(d)) + νEreg(σ∗(d)). (3)Eq. (2) indiates that the global energy is deomposable over eah region.This property helps in de�ning fast algorithms for region deimation. Eq. (3)balanes the two energies, one dependent on the image (the image energy Eimg),the other dependent only on the model (the regularization energy Ereg).The parameter ν is often interpreted as a sale parameter, sine it privilegesthe goodness of �t for low values (and over-segmentation) and a priori mostlikely regions for high values (and under-segmentation). The image energy usedfor our experiments is de�ned as follows:
Eimg(σ∗(d)) = −δ

∑

Ck∈Cd

‖D I(Ck)‖l̂(k, k+1; Cd) +
∑

(x,y)∈R(σ∗(d))

‖I(x, y) − µσ∗(d)‖
2(4)where l̂(k, k+1; Cd) denotes the length estimate of a linel at point Ck, I(x, y)denotes the olor of the pixel (x, y) and ‖D I(Ck)‖ the norm of the di�erentialof I at point k. This last measure is equal to the norm of the gradient for greylevel images. The term µσ∗(d) represents the mean olor of the region enodedby σ∗(d). The seond sum of the above expression desribes thus the squarederror of the region �t. Finally, the term δ represents the respetive weight of thegradient and squared error energies.The regularization energy is de�ned from the estimate of the perimeter ofthe region as Ereg(σ∗(d)) = P̂er(R(σ∗(d)); G) (Setion 3.2). Given two possiblemerge operations induing the same variation of the image energy, this hoie



Leture Notes in Computer Siene 9for the regularization term favors the one whih indues the simplest partitionwith the lowest overall length of ontours. The advantage of using disrete lengthestimators ompared to a basi ount of the linels is to make the segmentationproess more independent on the alignment of omponents wrt some axes.We tested the in�uene of length penalization on the lassial Girl test im-age (Fig. 4). Two pyramids have been built on an initial partition enoded bya ombinatorial map G0. This initial partition is de�ned by a watershed algo-rithm applied on the gradient of the Girl test image. The parameter ν is �xedto 1.3 during the onstrution of both pyramids. Fig. 4(b) represents one sig-ni�ant level of the �rst pyramid built using a �xed length estimate equal to 1for all linels, as lassially done by many authors [7℄[3℄. Fig. 4(), represents theequivalent level in the seond pyramid built using the disrete length estimatorde�ned in Setion 3.2. As shown by Fig. 4() the more aurate measure of thelength given by the disrete length estimator provides the smoothest bound-aries. Fig. 4(d) shows that the most signi�ant regions survive at highest levelsin the pyramid (darkest boundaries). So that pyramidal segmentation providesa multi-sale image segmentation.Pyramidal segmentation algorithmOur energy minimization method starts with an initial partition oded by a map,and merges at eah step the two adjaent regions, the merging of whih induesthe greatest derease (or the smallest inrease) of the ombinatorial map energy.This proess may be interpreted as a gradient desent whih ontinues when aloal minima is reahed in order to seek other minima. Note that our frameworkis not devoted to a spei� strategy for energy minimization. Many alternativeoptimization heuristis ould be used (e.g. the sale-limbing of Guigues et.al. [7℄). The proposed approah is however su�ient to ompare the respetiveadvantages of di�erent energies. Let us additionally note that using our strategyor the sale limbing of Guigues et. al., only two regions are merged between twoonseutive levels of the pyramid. This merge strategy does not indue a highmemory ost due to the impliit enoding of the ombinatorial pyramid (O(N)for an image with N pixels). An expliit onstrution of all the redued graphsusing graph or dual graph pyramids would require a huge amount of memorywith a lot of redundany between graphs (O(N2)).5 ConlusionWe have presented a new framework for segmenting images with a pyramidalbottom-up approah using an energy-minimizing sheme. Our framework om-bines ombinatorial pyramids, whih an represent in the same struture all thelevels of a hierarhy, and disrete geometri estimators, whih provide preise ge-ometri measurements and allow the de�nition of new regularization and imageenergy terms. A greedy algorithm for omputing the hierarhy was also providedand some examples of segmentation were exhibited and disussed.
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