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t. This paper de�nes the basis of a new hierar
hi
al segmen-tation framework based on an energy minimization s
heme. This newframework is based on two formal tools. First, a 
ombinatorial pyramiden
odes e�
iently a hierar
hy of partitions. Se
ondly, dis
rete geomet-ri
 estimators measure pre
isely some important geometri
 parametersof the regions. These measures 
ombined with photometri
al and topo-logi
al features of the partition allow to design energy terms based ondis
rete measures. Our segmentation framework exploits these energiesto build a pyramid of image partitions with a minimization s
heme. Someexperiments illustrating our framework are shown and dis
ussed.1 Introdu
tionThe 
onvergen
e of energy minimization and hierar
hi
al segmentation algo-rithms provides a ri
h framework for image segmentation. This framework isbased on an obje
tive 
riterion, 
alled energy, whose minimization de�nes asalient partition a

ording to a given problem. The energy of a partition is gen-erally de
omposed by summation over ea
h region R, where the energy is aweighted sum of two terms E(R) = Eimg(R) + νEreg(R). Eimg may be under-stood as a �t to the data within the region while Ereg 
orresponds to a regulariza-tion term. The parameter ν de�nes the respe
tive weights of the two terms. TheMumford-Shah energy is a 
lassi
al instan
e of this approa
h [1℄. Su
h an equa-tion may also be interpreted within the Minimum Des
ription Length (MDL)framework [2℄, where the two energies Eimg and Ereg represent respe
tively theen
oding 
osts of the photometry and the geometry of a region.Several methods have been proposed in order to obtain a partition minimiz-ing an energy. These methods in
lude the level set approa
h [1℄, graph 
uts [3℄and the methods based on a region merging s
heme [4�7℄. The de�nition of ameaningful segmentation using an energy minimization framework and a merges
heme supposes �rst to de�ne a merge strategy. If the parameter ν is �xed,a near optimal strategy 
onsists in merging at ea
h step the two regions, themerging of whi
h indu
es the greatest de
rease of the energy until any mergewould in
rease the energy. The obtained partition is said to be 2 normal at the
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ale ν [4, 5℄. An alternative strategy [6℄ 
onsists in merging at ea
h step thetwo regions whose union would belong to the 2 normal partition of lowest s
ale.This redu
tion framework avoids the need to sele
t a ve
tor of ν parametersen
oding a priori the di�erent s
ales of interest. However, previous works [4�6℄were based on a sequen
e of merge operations 
ombined with a stopping 
riterion(number of regions, maximal value of ν. . . ). Guigues et. al. [7℄ expli
itly en
odethe hierar
hy of partitions using a redu
tion s
heme similar to [6℄ but uses thehierar
hy in order to build for any value of ν, the optimal partition whi
h may bede�ned from the hierar
hy. Moreover, instead of starting from the grid of pixelslike [6℄, their initial partition is an over partition of the image. It presents twoadvantages. First, the initial over segmented partition allows to 
ompute reliablestatisti
s on regions. Se
ondly, it restri
ts the set of possible partitions and thusredu
es the risk to be trapped into a lo
al minima.The se
ond problem that should be addressed by a segmentation algorithm isthe 
orre
t design of the energy terms. For instan
e, the 
lassi
al Mumford-Shahenergy simply 
ombines the squared error of ea
h region together with the totallength of the partition boundaries. However, as shown by several authors [7℄,more 
omplex models (both geometri
al and photometri
al) may handle �nerde�nitions of salient partitions. Their design requires to �t geometri
al modelsonto regions. An e�
ient a

ess to the set of boundaries of ea
h region and totheir geometry is thus 
ompulsory. However, 
lassi
al hierar
hi
al segmentationframeworks are not adequate for this task. Adaptive pyramids based on graph [8℄do not provide a 1-1 
orresponden
e between the edges of the graphs and thegeometri
al boundaries: re
onstru
ting the geometry of a region is then tri
ky.Dual graphs [9℄ behave better for this task but the expli
it en
oding of all redu
edgraphs restri
ts the number of merge steps.This paper provides a new framework that addresses the design of new energyterms based on geometri
al and photometri
al features. The sta
k of su

essivelyredu
ed partitions is en
oded using a 
ombinatorial pyramid [10℄. A very �negranularity for the hierar
hy is then a
hieved sin
e a new level of the pyramidis 
reated for ea
h merging of two regions. Geometri
al features are 
omputedon ea
h partition of the hierar
hy using dis
rete geometri
 estimators of normaland length. This framework o�ers then a 
ompa
t and e�
ient en
oding of thehierar
hy together with an e�
ient a

ess to the geometri
al and topologi
alproperties of the partition. It 
ame thus as a natural 
omplement to methodssear
hing for optimal partitions within a hierar
hy. The paper is stru
tured asfollows. We present in Se
tion 2 the 
ombinatorial pyramid model. The appli-
ation of this model to 
ompute geometri
al features on regions using dis
retegeometri
 estimators is presented in Se
tion 3. We then present in Se
tion 4 oneenergy based on dis
rete estimators together with some experiments.2 Combinatorial PyramidsOur approa
h is based on 
ombinatorial maps [11℄. A 
ombinatorial map maybe seen as a planar graph en
oding expli
itly the orientation of edges around a
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edFig. 1. A dual of a 
ombinatorial map (a) en
oding a 3 × 3 grid. The 
ontra
ted
ombinatorial map (b) obtained after appli
ation of the 
ontra
tion kernel (CK)

K1 = α∗(1, 2, 10, 11, 12, 6). The redu
ed 
ombinatorial map (
) is obtained by theremoval of the empty self loops α∗(4) and the removal kernel of empty double edges(RKEDE) K3 = α∗(13, 14, 15, 19, 18, 22) ∪ {24,−16, 17,−20, 21,−23, 3,−5}. In orderto avoid overloading of images, only positive darts are shown in (a) and (b).given vertex. To do so, ea
h edge of a planar graph is split into two half-edges
alled darts (e.g. darts 16 and −24 in Fig. 1
). A 
ombinatorial map is formallyde�ned by a triplet G = (D, σ, α) where D represents the set of darts and σ is apermutation on D whose 
y
les 
orrespond to the sequen
e of darts en
ounteredwhen turning 
ounter-
lo
kwise around ea
h vertex. Finally α is an involutionon D whi
h maps ea
h of the two darts of one edge to the other one (e.g. α maps
16 to −24 and −24 to 16 in Fig 1
). The 
y
les of α and σ 
ontaining a dart dwill be respe
tively denoted by α∗(d) and σ∗(d).Given a 
ombinatorial map G = (D, σ, α), its dual map is de�ned by G =
(D, ϕ, α) with ϕ = σ ◦ α. The 
y
les of permutation ϕ en
ode the fa
es of the
ombinatorial map and may be interpreted as the sequen
e of darts en
ounteredwhen turning 
lo
kwise around a fa
e. The 
y
le of ϕ 
ontaining a dart d willbe denoted by ϕ∗(d).2.1 En
oding the image grid with 
ombinatorial mapCombinatorial maps 
an also 
ode the low level geometry of image pixels. Indeed,Fig. 1a des
ribes a dual 
ombinatorial map G0 = (D0, ϕ0, α0) en
oding a 3 × 34-
onne
ted planar sampling grid. The ϕ, α and σ 
y
les of ea
h dart maybe respe
tively understood as elements of dimensions 0, 1 and 2 and formallyasso
iated to a 2D 
ellular 
omplex [10℄. More pre
isely, ea
h α0 
y
le may beasso
iated to a linel (sometimes also 
alled 
ra
k or surfel) between two pixels.Ea
h of the two darts of an α0 
y
le 
orresponds to an orientation along thelinel. For example, the 
y
le α∗

0(1) = (1,−1) is asso
iated to the linel en
odingthe right border of the top left pixel of the 3 × 3 grid (Fig. 1a). Darts 1 and
−1 de�ne respe
tively a bottom to top and top to bottom orientation along thelinel.2.2 Constru
tion of Combinatorial PyramidsA 
ombinatorial pyramid is de�ned by an initial 
ombinatorial map su

essivelyredu
ed by a sequen
e of 
ontra
tion or removal operations whi
h are formal
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haud†translations of region merges. Contra
tion operations are en
oded by 
ontra
tionkernels (CK). These kernels, de�ned as a forest of the 
urrent 
ombinatorial map,may however 
reate redundant edges su
h as empty-self loops and double edges.Empty self loops (edge α∗
1(4) in Fig. 1b) may be interpreted as region innerboundaries and are removed after the 
ontra
tion step. The remaining redundantedges, 
alled double edges, belong to degree 2 verti
es in G (e.g. ϕ∗

1(13), ϕ∗
1(14),

ϕ∗
1(15)) in Fig. 1b) and are removed using a removal kernel of empty doubleedges (RKEDE) whi
h 
ontains all darts in
ident to a degree 2 dual vertex.Further details about the 
onstru
tion s
heme of a 
ombinatorial pyramid maybe found in [10℄.2.3 Embedding of region boundariesAs mentioned in Se
tion 2.1, if the initial 
ombinatorial map en
odes a planarsampling grid, the geometri
al embedding of ea
h initial dart 
orresponds toan oriented linel. Moreover, ea
h dart of a redu
ed map that is not a self loopen
odes a 
onne
ted boundary between two regions. The embedding of su
h aboundary may be retrieved from the embedding of the darts of the initial map

G0. Let us 
onsider the redu
ed 
ombinatorial map Gi = (Di, σi, αi) de�ned atlevel i and one dart d ∈ Di whi
h is not a self loop. The sequen
e d1 . . . , dn ofinitial darts en
oding the embedding of the dart d is obtained using the followingrelation:
d1 = d , dj+1 = ϕ0 ◦ · · · ◦ ϕ0︸ ︷︷ ︸

mj times (α0(dj)) (1)where G0 = (D0, ϕ0, α0) is the dual G0 and mj is the smallest integer q su
hthat ϕq
0(α0(dj)) survives at level i or belongs to some former RKEDE. The dart

dn is the �rst dart de�ned by Eq. (1) whi
h survives up to level i. This dartalso satis�es α0(dn) = αi(d) by 
onstru
tion of the re
eptive �elds. Note thatthe tests performed on ϕq
0(α0(dj)), q ∈ {1, . . . , mj} to determine if it is equalto dj+1 or dn are performed in 
onstant time using the impli
it en
oding of
ombinatorial pyramids.Let us 
onsider the dart 16 in Fig. 1
. This dart en
odes the border betweenthe ba
kground and the �rst row of the 3 × 3 grid en
oded by the σ3 
y
le

σ∗
3(16) = (16, 7, 8) of G3. The sequen
e of initial darts en
oding the boundaryof the dart 16 is retrieved using Eq. (1) and is equal to: 16.15.14.13.24 (Fig. 1b).Sin
e ea
h initial dart is asso
iated to an oriented linel, one may asso
iate asequen
e of Freeman's 
odes to ea
h sequen
e of initial darts (Fig. 1b) and thusto ea
h dart of a redu
ed 
ombinatorial map Gi. The sequen
e of Freeman's 
odesasso
iated to a dart d is 
alled the segment asso
iated to d (e.g.: the segmentasso
iated to the dart 16 is sequen
e s16 = 1.2.2.2.3).
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5 6Fig. 2. The 
entral white region σ∗(1) (a) 
ontains several subregions. Its boundaryis thus split into several 
onne
ted 
omponents 
onne
ted by bridges in G (b). Theseedges 
orrespond to self loops in G (
).3 Dis
rete geometry over a partitionAs mentioned in Se
tion 2, ea
h edge (d, αi(d)) of a partition G that is nota self loop en
odes a 
onne
ted boundary between two regions and is 
alledseparating. On the other hand, a self loop 
orresponds to a bridge in the dual
ombinatorial map and is 
hara
terized by αi(d) ∈ σ∗

i (d) (e.g. edge (3,−3) or
(5,−5) in Fig. 2b
). Su
h edges, 
alled �
tive,either 
onne
t the outer boundary to some inner boundary (e.g. edge (3,−3)in Fig. 2) or 
onne
t two inner boundaries (edge (5,−5) in Fig. 2).Ea
h separating edge is embedded as a 4-
onne
ted digital path, in
luded inthe interpixel digital plane (Se
tion 2.3 and [10℄).When estimating the geometry of the boundary of the region, �
tive edges donot play any role. More pre
isely the 
on
atenation of only the separating edgesde�nes a set of 4-
onne
ted digital loops. Ea
h of these loops is either the outerboundary of the region or one of its inner boundaries. Given an initial dart dbelonging to a separating edge, Algorithm 1 extra
ts a boundary between region
σ∗(d) and its 
omplement (setting Lin = σ∗(d)) or between regions σ∗(d) and
σ∗(d′) and their 
omplement (setting Lin = σ∗(d) ∪ σ∗(d′)). Its prin
iple is tofollow the boundary with σ ex
ept that it skips �
tive edges and edges in-between
σ∗(d) and σ∗(d′). This method for tra
king a boundary is easily understood onFig. 2b, where for instan
e the algorithm tra
ks from dart 1, then 2 = σ(1),3 is skipped sin
e −3 ∈ σ∗(1), then 8 = σ(−3) and terminates on 1 = σ(8)again. Extra
ting all the boundaries of a region is done in a similar way. Allthese algorithms 
an be implemented with a 
omplexity linear with the numberof boundary linels.3.1 Geometry with digital straight segmentsWe may now examine how geometri
 quantities 
an be estimated on a 
losed4-
onne
ted digital 
ontour C, whi
h is some boundary of a region or two ad-ja
ent regions (
omputed as in the previous paragraph). We restri
t ourselvesto pure dis
rete geometry tools based on digital straight segment (DSS) re
ogni-tion. Several equivalent de�nitions of DSS exist together with several 
lasses ofalgorithms to re
ognize them on digital 
urves (see for instan
e [12℄ for a re
ent
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ques-Olivier La
haud†Algorithm 1 Algorithm to visit all the linels of the digital boundary en
ir
lingregion(s) spe
i�ed by their darts Lin and 
ontaining the dart d.1 Fun
tion Map::boundary( dart d, darts Lin ) : Freeman 
hainEnsure: Return a sequen
e of Freeman's 
odes that is a 4-
onne
ted loop.Require: d 6∈ Lin2 list C ← ∅, dart b ←drepeat
C.append(sb)
b ←σ(b)while α(b) ∈ Lin do {Skip �
tive or interior edges}

b ←ϕ(b)end whileuntil b = dreturn Csurvey). We 
hose here to present brie�y the arithmeti
 point of view of digitallines, whi
h leads to rather simple and e�
ient algorithms [13, 14℄.The set of points (x, y) of the digital plane verifying µ ≤ ax−by < µ+|a|+|b|,with a, b and µ integer numbers, is 
alled the standard line with slope a/b andshift µ. A standard line is always 4-
onne
ted. A sequen
e of 
onse
utive points
Ci,j indexed from i to j of the digital 
urve C is a digital straight segment (DSS)i� there exists a standard line (a, b, µ) 
ontaining them. The one with smallest
a + b determines its 
hara
teristi
s, in parti
ular its slope a/b. Any DSS Z thusde�nes an angle θ(Z) between its 
arrying standard line and the x-axis (in [0; 2π[sin
e a DSS is oriented), 
alled the dire
tion of Z.The predi
ate �Ci,j is a DSS� is denoted by S(i, j). In
remental algorithmsexist to re
ognize a digital straight segment on a 
urve and to extra
t its 
har-a
teristi
s [13℄. Therefore de
iding S(i, j + 1) or S(i − 1, j) from S(i, j) are
O(1) operations. Any DSS Ci,j is 
alled a maximal segment i� ¬S(i, j + 1) and
¬S(i−1, j). Maximal segments are thus the inextensible DSS of the 
urve (Fig. 3,left). Note that the set of all maximal segments of a 
urve 
an be 
omputed intime linear with the number of 
urve points [14℄.3.2 Tangent, normal and length estimationSeveral tangent estimators based on DSS re
ognition have been proposed. Wepropose to use the λ-Maximal Segment Tangent estimator (λ-MST) to approa
hthe tangent dire
tion at any point of the digital 
urve [15℄. It was indeed shownto give good approximations even at 
oarse s
ale, to be rather independent fromrotations and to be asymptoti
ally 
onvergent.Fig. 3, right, gives the essential idea of this tangent estimator. Given a point,the dire
tion θi of every maximal segment 
ontaining it is evaluated. The rela-tive position ei of the point within the maximal segment is also 
omputed. The
λ-MST tangent dire
tion θ̂ is some weighted 
ombination of the pre
eding pa-rameters: θ̂ = (

∑
i λ(ei)θi)/(

∑
i λ(ei)). In our experiments, the mapping λ was
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θ1 = 37◦ θ2 = 28◦ θ3 = 19◦ θ4 = 12◦Fig. 3. Left: every maximal segment along this 
ontour is drawn as its re
tangularbounding box. Right: λ-Maximal Segment Tangent estimation at a given point.de�ned as the triangle fun
tion taking base value 0 at 0 and 1, and peak value1 at 1
2 . For further details, see [15℄.The experimental average number of maximal segments per linel is between3 and 4. Therefore 
omputing the λ-MST dire
tion is not 
ostly and is a O(1)operation on average. This te
hnique of tangent estimation is easily extendedto any real 
urvilinear abs
issa along the digital 
ontour. The tangent is thusde�ned at any linel, taking half integer abs
issas.The estimation of the normal ve
tor at Ck is then simply the ve
tor n̂(k) =

(− sin(θ̂(k)), cos(θ̂(k))). The elementary length l̂(k, k + 1; C) of a linel Ck,k+1 isde�ned as | cos(θ̂(k + 0.5))| for horizontal linels and | sin(θ̂(k + 0.5))| for verti
allinels. It 
orresponds to an estimation of the length of a unit displa
ement alongthe digital 
urve. The length of C is estimated by simple summation of theelementary length of its linels. This method of length evaluation was reported togive very good experimental results [16℄. If Cb is boundary(b, σ∗(b)) as returnedby Algorithm 1, then its length is L̂(b; G) =
∑|Cb|

k=1 l̂(k, k + 1; Cb). The totalperimeter P̂er(R(σ∗(b)); G) of the region σ∗(b) is the sum of the length of ea
hof its boundaries.4 Energy of a partition and pyramidal segmentationThe geometri
al features (normal, perimeter) de�ned in Se
tion 3 may be 
om-puted on ea
h region of a partition to provide di�erent measures of its geometri-
al 
hara
teristi
s. Su
h measures may then be in
orporated into a hierar
hi
alsegmentation algorithm based on an energy minimization s
heme (Se
tion 1).Su
h energy balan
es two terms: the goodness of �t term and a regularizationterm whi
h penalizes unlikely or 
omplex models. The energy of a partition en-
oded by the map G is simply 
alled the energy of the 
ombinatorial map G andis formally de�ned as follows: Let G = (D, σ, α) be a 
ombinatorial map with a
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(a) (b) (
) (d)Fig. 4. In�uen
e of length penalization: (a) image Girl, (b) one level of the pyramidwith l̂(k, k+1; C) = 1, (
) same level of a pyramid built using dis
rete length estimators.All the boundaries of the pyramid whi
h 
ontains (
) are superimposed on (d). Thedarkest boundaries are those who survive at the highest levels.geometri
al embedding in the digital grid and an input image I over this grid.Let Dσ be the set of σ-
y
les of D. The energy of the 
ombinatorial map G is

E(G) =
∑

σ∗(d)∈Dσ

E(σ∗(d)), (2)with, E(σ∗(d)) = Eimg(σ∗(d)) + νEreg(σ∗(d)). (3)Eq. (2) indi
ates that the global energy is de
omposable over ea
h region.This property helps in de�ning fast algorithms for region de
imation. Eq. (3)balan
es the two energies, one dependent on the image (the image energy Eimg),the other dependent only on the model (the regularization energy Ereg).The parameter ν is often interpreted as a s
ale parameter, sin
e it privilegesthe goodness of �t for low values (and over-segmentation) and a priori mostlikely regions for high values (and under-segmentation). The image energy usedfor our experiments is de�ned as follows:
Eimg(σ∗(d)) = −δ

∑

Ck∈Cd

‖D I(Ck)‖l̂(k, k+1; Cd) +
∑

(x,y)∈R(σ∗(d))

‖I(x, y) − µσ∗(d)‖
2(4)where l̂(k, k+1; Cd) denotes the length estimate of a linel at point Ck, I(x, y)denotes the 
olor of the pixel (x, y) and ‖D I(Ck)‖ the norm of the di�erentialof I at point k. This last measure is equal to the norm of the gradient for greylevel images. The term µσ∗(d) represents the mean 
olor of the region en
odedby σ∗(d). The se
ond sum of the above expression des
ribes thus the squarederror of the region �t. Finally, the term δ represents the respe
tive weight of thegradient and squared error energies.The regularization energy is de�ned from the estimate of the perimeter ofthe region as Ereg(σ∗(d)) = P̂er(R(σ∗(d)); G) (Se
tion 3.2). Given two possiblemerge operations indu
ing the same variation of the image energy, this 
hoi
e
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e 9for the regularization term favors the one whi
h indu
es the simplest partitionwith the lowest overall length of 
ontours. The advantage of using dis
rete lengthestimators 
ompared to a basi
 
ount of the linels is to make the segmentationpro
ess more independent on the alignment of 
omponents wrt some axes.We tested the in�uen
e of length penalization on the 
lassi
al Girl test im-age (Fig. 4). Two pyramids have been built on an initial partition en
oded bya 
ombinatorial map G0. This initial partition is de�ned by a watershed algo-rithm applied on the gradient of the Girl test image. The parameter ν is �xedto 1.3 during the 
onstru
tion of both pyramids. Fig. 4(b) represents one sig-ni�
ant level of the �rst pyramid built using a �xed length estimate equal to 1for all linels, as 
lassi
ally done by many authors [7℄[3℄. Fig. 4(
), represents theequivalent level in the se
ond pyramid built using the dis
rete length estimatorde�ned in Se
tion 3.2. As shown by Fig. 4(
) the more a

urate measure of thelength given by the dis
rete length estimator provides the smoothest bound-aries. Fig. 4(d) shows that the most signi�
ant regions survive at highest levelsin the pyramid (darkest boundaries). So that pyramidal segmentation providesa multi-s
ale image segmentation.Pyramidal segmentation algorithmOur energy minimization method starts with an initial partition 
oded by a map,and merges at ea
h step the two adja
ent regions, the merging of whi
h indu
esthe greatest de
rease (or the smallest in
rease) of the 
ombinatorial map energy.This pro
ess may be interpreted as a gradient des
ent whi
h 
ontinues when alo
al minima is rea
hed in order to seek other minima. Note that our frameworkis not devoted to a spe
i�
 strategy for energy minimization. Many alternativeoptimization heuristi
s 
ould be used (e.g. the s
ale-
limbing of Guigues et.al. [7℄). The proposed approa
h is however su�
ient to 
ompare the respe
tiveadvantages of di�erent energies. Let us additionally note that using our strategyor the s
ale 
limbing of Guigues et. al., only two regions are merged between two
onse
utive levels of the pyramid. This merge strategy does not indu
e a highmemory 
ost due to the impli
it en
oding of the 
ombinatorial pyramid (O(N)for an image with N pixels). An expli
it 
onstru
tion of all the redu
ed graphsusing graph or dual graph pyramids would require a huge amount of memorywith a lot of redundan
y between graphs (O(N2)).5 Con
lusionWe have presented a new framework for segmenting images with a pyramidalbottom-up approa
h using an energy-minimizing s
heme. Our framework 
om-bines 
ombinatorial pyramids, whi
h 
an represent in the same stru
ture all thelevels of a hierar
hy, and dis
rete geometri
 estimators, whi
h provide pre
ise ge-ometri
 measurements and allow the de�nition of new regularization and imageenergy terms. A greedy algorithm for 
omputing the hierar
hy was also providedand some examples of segmentation were exhibited and dis
ussed.
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ques-Olivier La
haud†Our �rst experiments show that the length estimation 
an have a great in-�uen
e on the regularization of the segmentation. Dis
rete geometri
 estima-tors provide some smooth boundaries. However, they are useless if the over-segmentation gives irregular regions. In future works, we want to ta
kle thisproblem by using a smoother over-segmentation.Referen
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