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Abstract

We design a new model for an image iso-surface
which lies in the Delaunay graph of its vertices. Within
each 8-cube of the image, a set of loops is computed ac-
cording to the connectedness chosen for inner and outer
voxels. Next, a triangulation is computed which respects
the local geometry of these loops. Efficiency is obtained
through the use of a look-up table which summarizes the
algebraic tests that are required of each case. The inclu-
sion of the iso-surface in the Delaunay triangulation has
significant consequences. We derive a volume represen-
tation of the object, along with its skeleton. An exam-
ple depicts the complete construction of our iso-surface,
volume representation and skeleton computation.

1. Introduction

Currently, we are witnessing a proliferation of high
quality volumetric images, coming from a large number
of acquisition devices (e.g., MRI, CT scanner). Analysis
of this data often requires, as a first step, the computa-
tion and display of surfaces which approximate the ob-
jects boundaries.Digital surfacesand iso-surfacesare
perhaps the simplest surfaces that can be derived from
volumetric images. This paper focuses on iso-surfaces.
Iso-surfaces are composed of triangles whose vertices
lie in the

�
-dimensional Euclidean space✁✄✂ . These sur-

faces present some interesting topological and geometri-
cal properties; in fact they are 2-manifolds in✁✄✂ . Unlike
digital surfaces, they present a smooth aspect.

Unfortunately, iso-surfaces provide asurface repre-
sentationthat might be inadequate in a context other
than visualization. Avolume representationis some-
times necessary. For instance, physical modelling by
finite elements requires a partition of the object into ele-
mentary blocks (tetrahedra or cubes). On the other hand,
theskeletonis more appropriate to extract object param-
eters such as thickness or length.

Unlike existing methods, we propose in this paper to
build iso-surfaces that are included in the Delaunay tri-
angulation of their vertices. This property has impor-

tant consequences. First, the Delaunay triangulation has
remarkable properties, e.g. it is optimal for several ge-
ometric criterions. Secondly, these iso-surfaces can be
used to easily derive volume representations, and skele-
tons, of objects. Our construction, which is performed
locally, remains valid for non isotropic volume and is
performed in a time proportional to the size of the im-
age.

2. Preliminary definitions

In this section, we state some elementary definitions
of computational geometry which are used throughout
the paper [16]. In the following,☎ designates the dimen-
sion of space; when not specified,☎✝✆ � .

Delaunay graph. Let ✞✠✟✡✁☞☛ be a finite set of
points in general position. TheDelaunay triangulation
of ✞ is the set of triangles in 2D (or tetrahedra in 3D)
whose circumscribed balls contain no points of✞ in
their interior. In this paper, we will use the termDe-
launay graph, denoted by Del✌✍✞✏✎ , for the sub-complex
of the Delaunay triangulation formed by triangles, edges
and vertices in✑✒✂ .

Convex hull. Theconvex hull, denoted by Hull✌✓✞✏✎ ,
of an arbitrary set of points✞✡✟✔✑ ☛ is the smallest con-
vex set containing✞ . If we assume the set✞ to be fi-
nite, the convex hull is a polytope whose boundary is
included in the Delaunay graph of✞ .

Voronoi graph. The Voronoi diagramof a set of
points ✞ is a partition of the space into regions called
Voronoi regions. The Voronoi region of✕✖✟✖✞ is the
set of points of✁☞☛ that are closer to✕ than to any other
point of ✞ . The Voronoi diagram is the dual of the De-
launay triangulation. We use the termVoronoi graph,
denoted by Vor✌✓✞✏✎ , for the sub-complex of the Voronoi
diagram formed of polygons, edges and vertices in✑ ✂ .
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3. Iso-surface

3.1. Definition and marching-cubes algorithm

Let ✗✘☛ be the discrete☎ -dimensional space. A gray-
level volumetric image✙ is a mapping from a set✚✜✛✗✏✂ onto the set of real numbers✁ . Using the canoni-
cal embedding, the set✚ may be mapped from✗✏✂ into✁✄✂ as a grid of evenly spaced points. Each element of✚ is called avoxel. Thus, the image✙ may then be
viewed as a sampling of a scalar continuous field✢ on
the vertices of this discrete grid: the mapping✢ coin-
cides with the mapping✙ on these vertices. The set of
points where✢ takes the value✣ defines asurface ✤✦✥
(i.e. ✤ ✥ ✆✜✧✩★ ✟✪✁✄✂✬✫✘✢✭✌✓★✮✎✘✆✯✣✝✰ ). In the follow-
ing, we use the term “iso-surface” for any triangulated
surface that approaches✤ ✥ . The choice of✣ allows the
user to select a specific object in the data volume. In the
following, we assume the image✙ is finite and its border
is composed of only outer voxels or of only inner voxels.

The most common method of computing iso-surfaces
in images is certainlymarching-cubes[12]. Its princi-
ple is to analyze the image locally using blocks of eight
mutually adjacent voxels. These blocks are called8-
cubes. Within each 8-cube, a set of triangles is found
which separateinner voxels( ✢✭✌✲✱✳✎✵✴✶✣ ) from outer vox-
els( ✢✭✌✲✱✳✎✵✷✶✣ ). A ✣ -vertexof the iso-surface is defined
as a point lying on a grid edge between adjacent, inner
and outer, voxels. A linear model is used to estimate
where the iso-surface intersects this edge and determine
an appropriate position for the✣ -vertex. Different sets
of triangles may be constructed on the set of✣ -vertices
of an 8-cube. The chosen triangulation influences the
geometry and the topology of the iso-surface, and hence
the properties of the approximation.

Marching-cubes[12] exhibits an arbitrary choice,
which depends only on the inner or outer classification
of the 8-cube voxels. This leads to 256 possible trian-
gulations within an 8-cube. Building the surface locally
may be optimized by pre-computing a table associating
each configuration to a triangulation. Some authors re-
fine this choice by using different kinds of interpolation
or by exploiting gradient information (see [7] for a sur-
vey). However, none of these methods consider the ge-
ometry of the✣ -vertices, which explains why the com-
puted iso-surface does not, in general, coincide with the
Delaunay triangulation.

3.2. Proposed method for building iso-surfaces

To build a triangulated iso-surface that is included in
the Delaunay graph of its vertices, we use the iso-surface
definition suggested in [9] This definition is based on
one hand on the digital connectedness of voxels and on
the other hand on the location of the✣ -vertices on the
grid. In order that the paper be self-contained, we briefly
recall some definitions of digital topology.

Two (different) voxels are said to be6-adjacentif
their coordinates differ of✸✝✹ on exactly one coordinate.

They are18-adjacent(resp. 26-adjacent) if their coor-
dinates differ of ✸✝✹ on one or two coordinates (resp.
one, two or three coordinates). Two voxels✺ , ✻✼✟✖✽
are ✾ -connected(for ✾✿✟✡✧❁❀❂✫❃✹❅❄❂✫❇❆✬❀✳✰ ) if there exists a
sequences of✾ -adjacent voxels of✽ , starting with✺ and
ending with ✻ . The transitive closure of this relation is✾ -connectedness, which defines✾ -componentsin ✽ . In
the following, a ❈ -connectedness is associated with the
inner voxels, and a❉ -connectedness is associated with
the outer voxels of✙ . The pair ✧✩❈❊✫❇❉❋✰ is called acon-
nectedness pair. Depending on the value chosen for❈
and ❉ (6, 18 or 26), different properties can be shown.
Following [9], we restrict our study to the pairs✌✓❀●✫❃✹❁❄❍✎ ,✌✍❀●✫■❆❏❀❑✎ , ✌▲✹❁❄●✫❇❀❍✎ and ✌▼❆❏❀❂✫◆❀❍✎ , which are said to bevalid.

On every face of an 8-cube,✣ -edgesare placed be-
tween ✣ -vertices so that they do not intersect the con-
nectedness links between inner voxels, or those between
outer voxels. The✣ -edges of in an 8-cube form a set of
loops (called✣ -loops) (see Figure 1). The triangulation
of ✣ -loops is performed locally and depends on the ge-
ometry of their✣ -vertices. The edges and triangles are
built on the boundary of theconvex hullof both the✣ -
vertices and the inner voxels (resp. outer voxels), when
the 6-connectedness has been chosen for outer voxels
(resp. inner voxels). This three-dimensional convex set
is called thelocal ✣ -convex hull. Figure 2 illustrates
this construction. Figure 1 displays some examples of
subdivisions for various configurations. It can be shown
that, for any of the four valid pairs, the✣ -loops always
belong to the boundary of their local✣ -convex hull and
that edges within a loop are always determined by✣ -
vertices of this loop. The set of✣ -vertices, edges and
triangles thus defined from✙ forms a 2-manifold in✁✄✂
with no boundary.

Figure 2. Two different triangulations of
a ✣ -loop on the convex hull of the ✣ -
vertices and the inner voxels ( ✌✓❈❊✫❇❉❖✎P✟✧◗✌▲✹❁❄●✫◆❀❑✎❘✫❁✌✓❆❏❀❂✫◆❀❑✎■✰ ).

3.3. Inclusion in the Delaunay graph

We will now present the main result of this paper,
which is to show that a such defined iso-surface has the
interesting property to be included in the Delaunay trian-
gulation of its vertices. To establish this result, we first
show that the computation of the Delaunay graph can be
restricted to a computation between vertices of the same
8-cube. In the following,✤ ✥ denote an iso-surface,✞ ✥
the set of its vertices.

Theorem 1 Let ✧❁❙❏❚✩✫❇❙❁❯❏✫❃❱❃❱❅❱❃✫❇❙✩❲❍✰ be the❳❨✣ -vertices of
a given 8-cube. Then:❩

Hull ✌▲✧❁❙✩❬▲✰✩❬❪❭ ❚■❫❵❴❵❴❵❴ ❫ ❲ ✎❛✛ Del ✌❜✧❁❙✩❬▲✰❁❬❝❭ ❚■❫❵❴❵❴❵❴ ❫ ❲ ✎❛✛ Del ✌✍✞✏✎
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(a)

(b)

(c) (d)

Figure 1. ✣ -loops created for classical configurations and triangulation of these loops. The
connectedness pair has an influence on both the construction of the ✣ -loops and their tri-
angulation: (a) ✣ -loops and ✣ -edges created for ✌✓❈❊✫❇❉❖✎❞✟❡✧◗✌✍❀❂✫❃✹❅❄❑✎❘✫❁✌✍❀●✫■❆❏❀❑✎■✰ ; (b) when ✌✓❈❊✫❇❉❖✎❞✟✧❑✌❢✹❅❄❂✫◆❀❍✎❣✫❅✌▼❆❏❀●✫❇❀❍✎❘✰ , these configurations have the same ✣ -loops than in (a), but different ✣ -edges;
(c) when ✌▼❈❋✫■❉❤✎✄✟✐✧❑✌❢✹❅❄❂✫◆❀❍✎❣✫❅✌▼❆❏❀●✫❇❀❍✎❘✰ , these configurations have different ✣ -loops than in (a); (d)
special case when ✌▼❈❋✫■❉❤✎❦❥✖✌▼❆❏❀●✫❇❀❍✎ (a symmetric case exists when ✌✓❈❊✫❇❉❖✎❧❥♠✌✍❀❂✫❇❆❏❀❑✎ ).
Proof. The first inclusion is immediate. To prove

the second inclusion, we compute the intersection of the
smallest sphere♥ enclosing❙ ❬ and ❙❣♦ with the discrete
grid. This computation can be achieved by simple ge-
ometrical considerations: we search points✱ such that
the straight-lines✌✲✱◗❙✩❬▼✎ and ✌✲✱◗❙ ♦ ✎ are orthogonal. Let♣
be the smallest straight parallelepiped enclosing❙❁❬ and❙ ♦ . The vertices of♣ are located on the sphere♥ . As♣ remains inside the considered 8-cube (see Fig. 3),
the sphere♥ does not intersect grid edges of other 8-
cubes. Consequently, the sphere♥ contains no points
from ✞rqs✧❁❙❏❚t✫◆❙✩❯t✫❃❱❝❱❝❱❪✫❇❙✩❲◗✰ in its iterior, which implies the
second inclusion.✉
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je

ei

je

ei

je

ei

je

(d)(c)(b)(a)

Figure 3. To examine the intersection of
the sphere ♥ with diameter ✈ ❙ ❬ ❙❃♦❣✇ , four dif-
ferent cases must be considered, which
correspond to different positions of the✣ -vertices ❙ ❬ and ❙❃♦ on the 8-cube. The
smallest parallelepiped ♣ enclosing ❙ ❬ and❙❃♦ has been drawn in gray. It always lies
inside the 8-cube. The second line shows
the intersection of the sphere ♥ , the paral-
lelepiped ♣ and the 8-cube with the plane✧❁①②✆④③✳✰ .

Theorem 2 Let ✤ ✥ be an iso-surface and✞ ✥ the set of
its vertices. Then:✤ ✥ ✛ Del ✌✍✞ ✥ ✎ .

Proof. Each edge ✈ ❙❁❙✩⑤⑥✇ of the iso-surface be-
longs to an 8-cube. Let✧❁❙❏❚❁✫◆❙✩❯✬✫❃❱❝❱❪❱❝✫◆❙t❲❑✰ denotes the
vertices of this 8-cube. By construction,✈ ❙✩❙✩⑤❵✇⑦✛❩

Hull ✌❜✧✩❙t❚t✫◆❙✩❯t✫❅❱❪❱❝❱❪✫❇❙t❲❑✰✩✎ . Theorem 1 concludes.✉
3.4 Tabulation of configurations

Because the set of triangles built inside each 8-cube
depends on the geometry of the✣ -vertices, a static table
of 256 configurations cannot be used to store all possi-
ble triangulations (as opposed to the marching-cubes for
instance). We can nevertheless simplify the computation
of the convex hull within each 8-cube with a careful case
study of the different configurations.

First, we notice that only✣ -loops with at least four✣ -vertices must be triangulated. Therefore, 56 configu-
rations do not depend on the geometry of the✣ -vertices.
For each other configuration, which contains at least one✣ -loop with more than three✣ -vertices, several sets
of triangles are stored. At run-time, simple algebraic
tests will determine which set of triangles corresponds
to a particular geometry. To exhibit these algebraic tests
for each configuration, we make use of the following
lemma:

Lemma 1 Let ⑧⑨✆⑩✧❁❙❁❶❏✫❇❙❏❚✩✫❃❱❝❱❝❱❪✫❇❙✩❲✩❷✦❚❁✰ be a ✣ -loop in a
given 8-cube. Let us assume that the connectedness is
one of ✌▼❆❏❀●✫❇❀❍✎ or ✌▲✹❁❄●✫◆❀❑✎ . Then an edge❙ ❬ ❙❃♦ belongs to
the local ✣ -convex hull iff❸ ❳❹✫◆❺❼❻✩❽❾✷✪❳✄✷➀❿❍✫▼❿✄✷➁❺❾✷➂❽➄➃ ➅❙ ❬ ❙❁➆❹➇❍✌✪➅❙ ❬ ❙t❲❛➈ ➅❙ ❬ ❙❃♦❁✎❛✷➉③●✫
indices taken modulo❳ .

This lemma comes from the fact that all edges of a✣ -loop belong to the local✣ -convex hull, and that the



shape of the local✣ -convex hull within a ✣ -loop de-
pends only on the vertices of this loop. A symmetric
lemma holds when the connectedness is one of✌✍❀❂✫❇❆❏❀❑✎
or ✌✍❀❂✫❃✹❁❄❍✎ (the inequality is just inverted).

Table 1 displays the algebraic tests required for each
configuration. All other configurations can be derived
from the pictured ones either by rotation or by inver-
sion of inner and outer voxels (and connectedness). The
table also displays configurations whose algebraic tests
are identical to the one presented. In most cases, only
several of the different calculations must be performed,
since most edges cannot exist simultaneously.

The computation of iso-surfaces following the De-
launay constraint cannot be as fast as an entirely tabu-
lated algorithm. Most algebraic tests can nevertheless
be computed quickly, except for the last case which may
require a dozen inequality computations.

4. Application to the skeleton computation

The skeleton is a convenient representation of objects
widely used in the field of image analysis. The notion
of skeleton was first introduced by Blum [2] under the
name ofmedial axis transform. The skeleton Sk✌✲➊➋✎ of
an object➊ is defined as the set of centers of itsmaxi-
mal disks[6]. A disk is said to be maximal in an object if
there are no other disks included in the object that con-
tain it. This definition holds in any dimension and can
be applied in discrete as well as in continuous space. In
continous space, the skeleton has remarkable properties
[5]. It is a graph made of points and curves in 2D and
points, curves and surfaces in 3D. It has the same homo-
topy type as the object. Assuming the skeleton points to
be labelled with the radius of their associated maximal
disk, the skeleton provides a reversible encoding of the
object.

Skeleton computation has been intensively studied
both in discrete and continous space. In discrete space,
many algorithms have been proposed that can be divided
in two main families:➌ algorithms based on morphological thinnings that

preserve homotopy [10, 13, 14, 11],➌ algorithms using the distance map that preserve re-
versibility [4, 18].

There also exists mixed approaches using anchor points
[17]. A drawback of these techniques is the difficulty
of computing, in a reversible fashion, a discrete, single
pixel wide skeleton which preserves homotopy. For par-
ticular binary objects, such a set of pixels simply does
not exist.

In this paper, we focus on methods that directly com-
pute the skeleton in continuous space. We use the
method proposed by Boissonnat [3]. The idea is to par-
tition the object into Delaunay elements. The skeleton
is then defined as the dual of this partition. The input
of this method is a closed surface✤ whose set of ver-
tices is ✞➎➍ . If the surface✤ is included in the Delaunay

graph Del✌✍✞➏➍❤✎ , it is possible to distinguish exactly two
different types of Delaunay tetrahedra :inner tetrahe-
dra lying inside ✤ andouter tetrahedralying outside✤ .
The skeleton is defined as the dual of the inner Delaunay
elements. As such, the skeleton is formed of polygons,
edges and vertices defining surfaces in 3D. This method
works only if the boundary✤ is included in the Delau-
nay graph of its vertices Del✌✍✞ ➍ ✎ . The iso-surfaces con-
structed in the previous part verify this condition and can
therefore be used to compute the skeleton.

A simplification step follows the computation of the
skeleton. Its goal is to remove peripheral branches asso-
ciated to non significant parts of the object. The simplifi-
cation method used in this paper is a direct 3D extension
of the method proposed in [1].

Depending on the choice of inner and outer connect-
edness, different types of iso-surfaces can be generated
for the same volumetric data and the same threshold✣ .
We use the connectedness pair✌✓❀●✫❅✹❅❄❍✎ in order to mini-
mize the Euler constant and the number of loops in the
object and improve the efficiency of the simplification
step.

Our results are presented in figure 4. The first vol-
ume was generated synthetically and corresponds to the
discretization of an ellipsoid. As expected, the skeleton
computation provides an ellipse. The second and third
volumes were real images corresponding respectively to
a bone sample and a human heart. The volume sizes
were

� ③➑➐ � ③➑➐ � ③ , � ③➒➐ � ③➒➐ � ③ and ❄❍➓➑➐➀❄❍➓➑➐➀➔✬❄ .
The number of vertices on each iso-surfaces was 1708,
3272 and 36640. The running times for computing both
the iso-surface and the skeleton was 3 s, 6 s and 115 s on
an SGI O2 R4000. We emphasize that the surface por-
tions making the skeleton have a smooth aspect. Such
a smooth aspect is particularly tricky to achieve with
purely discrete approaches.

5. Conclusion

In this paper, we have constructed a new type of iso-
surfaces: they have the property to be included in the
Delaunay graph of their vertices. The proof uses simple
geometrical considerations and holds for non isotropic
voxels. A table of algebraic tests has been proposed in
order to speed up the computation. Iso-surfaces were
used to compute the skeleton. Future work includes the
use of the skeleton in order to extract parameters and
segment objects.
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configuration connectedness algebraic test→ added edges(excluded edges) other configurations

B

C

D

A

➣ ❯◆↔❃❫▼↔❇↕ ➣ ❚❢➙❣❫✓↔❇↕
(inverted for➣ ↔❣❫▼❯◆↔❇↕ ➣ ↔❃❫❼❚❢➙◆↕ ) ➛ ☛❧➜✘➝❃➞ → AC (BD)➛ ☛❧➟✘➝❃➞ → BD (AC)

C

D

A

B

➣ ❯◆↔❃❫▼↔❇↕ ➣ ❚❢➙❣❫✓↔❇↕
(inverted for➣ ↔❣❫▼❯◆↔❇↕ ➣ ↔❃❫❼❚❢➙◆↕ ) ➛❑➠ ☛❧➜✘➝ ➠ ➞ → AC (BD)➛❑➠ ☛❧➟✘➝ ➠ ➞ → BD (AC)

D

E

B C

A

➣ ❯◆↔❃❫▼↔❇↕ ➣ ❚❢➙❣❫✓↔❇↕
(inverted for➣ ↔❣❫▼❯◆↔❇↕ ➣ ↔❃❫❼❚❢➙◆↕ )

➛ ➜ ➡◆➢❪➤❼➥❍➦✓➧➡◆➢❪➤❼➥❍➦✓➧➩➨❑➦✍➫➛ ➜ ➡➡◆➢❪➤❼➥❍➦✓➧➩➨❑➦✍➭
➯ → AC (BD, BE)☛➲➟ ➣ ➝ ❷✒➳ ➛ ↕✓➵ ➛☛➲➟ ➣ ➳❖❷ ➝ ↕ ➣ ❚✦❷ ➞ ↕➒➸ → AD (BE, CE)➞❊➟ ➡◆➢❪➤❼➥❍➺✲➧➡◆➢❪➤❼➥❍➺✲➧❪➨❍➫❢➺➞❊➟ ➢⑥➭▲➥❍➫▲➧❪➢❪➤❼➥❍➺✍➧➫▲➺✲➨❑➭❼➢➩➤❜➥❍➺✲➧
➯ → BD (CE, AC)➝❦➜ ➛ ➞ ➳▲➵ ➣ ❚❋❷ ➛❑➠✏➛ ➞ ↕➝❦➜ ➳ ➛ ❷ ☛ ➛ ➸ → BE (AC, AD)☛➲➜ ➣ ➳❖❷ ➝ ↕ ➣ ❚✦❷ ➞ ↕☛➲➜➀➭▼➢❪➤❼➥❍➺✲➧❝➢➩➤❜➥❍➦✍➧➤❼➥❍➺✍➨❍➺✲➦ ➸ → CE (AD, BD)

E

D

CB

A

F ➣ ❯◆↔❃❫▼↔❇↕ ➣ ❚❢➙❣❫✓↔❇↕
true → AD (BE, CE, BF, CF)➛ ➜➻➡◆➢➩➦❼➥❍➫▲➧➡◆➢⑥➦❜➥❍➫▲➧➼➥❍➦ → AC (BD)➛ ➟➻➡◆➢➩➦❼➥❍➫▲➧➡◆➢⑥➦❜➥❍➫▲➧➼➥❍➦ → BD (AC)➝❦➜ ➤❜➥❑➽❢➨❑➫▲➭❼➽■➥❍➭➭▼➢➩➫❇➥❑➤✓➧ → DF (AE)➝❦➟ ➤❜➥❑➽❢➨❑➫▲➭❼➽■➥❍➭➭▼➢➩➫❇➥❑➤✓➧ → AE (DF)

E

D

CB

A

F ➣ ↔❣❫❼❯◆↔❇↕ ➣ ↔❃❫❼❚▲➙❇↕ true → CF (AD, AE, BD, BE)➛ ➟➾➝ ➵ ➣ ➝ ➣ ❚✦❷ ➞ ↕ ➠ ➞❜➚ ↕ → AC (BF)➛ ➜➾➝ ➵ ➣ ➝ ➣ ❚✦❷ ➞ ↕ ➠ ➞❜➚ ↕ → BF (AC)➞❊➜ ➫▲➭▼➽❘➥❍➫❪➽◆➨❑➫❇➥❍➭➢➩➤❜➥❍➭✓➧❝➢➩➤❜➥❑➽❢➧ → DF (CE)➞❊➟ ➫▲➭▼➽❘➥❍➫❪➽◆➨❑➫❇➥❍➭➢➩➤❜➥❍➭✓➧❝➢➩➤❜➥❑➽❢➧ → CE (DF)

B

DF E

C

A ➣ ❯◆↔❃❫▼↔❇↕ ➣ ❚❢➙❣❫✓↔❇↕ true → AD (BE, BF, CE, CF)☛➲➜❞➡❇➢➩➤❜➥❍➺✲➧❪➢❪➤❼➥❍➦✓➧➺✲➦ → AC (BD)☛➲➟ ➡❇➢➩➤❜➥❍➺✲➧❪➢❪➤❼➥❍➦✓➧➺✲➦ → BD (AC)➝❧➜ ➫▲➭▼➽➢➩➤❜➥❍➭▼➧❪➢➩➤❜➥❑➽◆➧ → DF (AE)➝❧➟ ➫▲➭▼➽➢➩➤❜➥❍➭▼➧❪➢➩➤❜➥❑➽◆➧ → AE (DF)

A
G

F

B C

D
E

➣ ❯◆↔❃❫▼↔❇↕ ➣ ❚❢➙❣❫✓↔❇↕
true → AD (BE, BF, BG, CE, CF, CG)
true → DG (AE, AF, BE, BF, CE, CF)➛ ➜ ➤❼➥❍➦✓➨❍➫❢➡❢➦➤❜➥❍➦✍➨❑➦✍➫ → AC (BD)➛ ➟ ➤❼➥❍➦✓➨❍➫❢➡❢➦➤❜➥❍➦✍➨❑➦✍➫ → BD (AC)➚s➟ ➭✓➫▲➪◆➥❍➭▼➨◗➤➤❼➥❍➭▼➨❑➭✓➫ → DF (EG)➚s➜ ➭✓➫▲➪◆➥❍➭▼➨◗➤➤❼➥❍➭▼➨❑➭✓➫ → EG (DF)

F E

D

CB

A

➣ ❯◆↔❃❫▼↔❇↕ ➣ ❚❢➙❣❫✓↔❇↕
(inverted for➣ ↔❣❫▼❯◆↔❇↕ ➣ ↔❃❫❼❚❢➙◆↕ )

➛ ➜ ➡❇➢➩➤❜➥❍➦✍➧➡❇➢➩➤❜➥❍➦✍➧➩➨❑➦✍➫➛ ➜ ➡❇➢➩➤❜➥❍➦✍➭▼➧➡❇➢➩➤❜➥❍➦✍➧➩➨❑➦➛ ➜ ➡◆➽➡❇➢➩➽❘➥❍➦✍➧➩➨❑➦
➶ ➹➘➹➴ → AC (BD, BE, BF)➛ ➟ ➡❇➢➩➤❜➥❍➦✍➧➡❇➢➩➤❜➥❍➦✍➧❪➨❍➦✓➫➛ ➟ ➫◆➢⑥➦✍➭▲➥❑➤✓➧➩➨◗➤❼➥❍➦➢➩➤❜➥❍➦✍➧❝➢➩➤❜➥❍➫▲➧➞❋➟✼➢➩➤❜➥❍➺✲➧❪➢❪➤❼➥❑➽◆➫▲➧➤❜➥❍➺✲➨❑➫▲➺
➶ ➹➘➹➴ → BD (AC, CE, CF)❴▲❴▲❴➝❦➟ ➛ ➣ ❚❹❷ ☛ ↕✍➵ ➣ ❚❹❷➷➳❜↕➝❦➟➬➺✍➢➩➤❜➥❍➫❪➽◆➧➺✍➢➩➤❜➥❑➽❢➧❪➨❑➽➝❦➟➀➫❢➢⑥➦✓➭❜➥❑➤✓➧➩➨◗➤❼➥❍➦➢➩➤❜➥❍➦✍➧❝➢➩➤❜➥❍➭✓➧☛➲➟ ➣ ❚✦❷ ➞ ↕ ➣ ❚❹❷ ➝ ↕✍➵ ➚
➶ ➹➹➹➘➹➹➹➴ → AD (BE, BF, CE, CF)

❴▲❴▲❴
Table 1. Case study for configurations whose triangulation is ambiguous. The center of axes
is at the lower left voxel of the 8-cube. The ➊ axis is directed to its lower right neighbor; the ➮
axis is directed to its upper right neighbor; the ➱ axis is vertical. Each vertex has one degree
of freedom on its segment; this free coordinate is denoted by the lower case of its name (its
range is the open interval ✇✃③●✫❅✹❍✈ ). The non-free coordinates are set to either 0 or 1. For each
configuration, the connectedness pair is given. The algebraic tests necessary to verify the
existence of ✣ -edges are displayed. For each of these edges, the ✣ -edges that cannot exist at
the same time are listed. Other configurations with similar tests are also displayed. We have
not listed all the different tests necessary to solve the lowest configuration; we have rather
provided several tests that are representative. The phrase “inverted for ✌✓❀●✫❃✹❁❄❍✎❃✌✍❀●✫■❆❏❀❑✎ ” means
that every inequality must be inverted when the connectedness couple is one of ✌✍❀❂✫❃✹❁❄❍✎ or ✌✍❀❂✫❇❆❏❀❑✎ .



(b) (d)(c)(a) (f)(e)

Figure 4. (a) Volumetric image. (b) Digital surface. (c) Iso-surface. (d) ✣ -vertices of the iso-
surface. (e) skeleton extracted from the Voronoi graph of the ✣ -vertices. (f) Simplified skeleton.
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