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Abstract

Iso-surfaces are routinely used for the visualization of volumetric structures. Further processing (such as
quantitative analysis, morphometric measurements, shape description) requires volume representations. The
skeleton representation matches these requirements by providing a concise description of the object. This paper
has two parts. First, we exhibit an algorithm which locally builds an iso-surface with two significant properties: it
is a 2-manifold and the surface is a subcomplex of the Delaunay tetrahedrization of its vertices. Secondly, because
of the latter property, the skeleton can in turn be computed from the dual of the Delaunay tetrahedrization of the
iso-surface vertices. The skeleton representation, although informative, is very sensitive to noise. This is why we
associate a graph to each skeleton for two purposes: (i) the amount of noise can be identified and quantified on
the graph and (ii) the selection of the graph subpart that does not correspond to noise induces a filtering on the
skeleton. Finally, we show some results on synthetic and medical images. An application, measuring the thickness
of objects (heart ventricles, bone samples) is also presented. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Volumetric image analysis often requires, as a first step, the computation and display of surfaces
which approximate the object boundaries.Iso-surfacesare perhaps the simplest surfaces that can be
derived from volumetric images. Iso-surface approximations are constructed over vertices which lie in
the 3-dimensional Euclidean space. As a set of triangles, iso-surfaces are easy to display. Furthermore,
they can be extracted very efficiently from volumetric images.

Unfortunately, iso-surfaces provide asurface representationof objects, which might be inadequate in
a context other than visualization. The analysis of volumetric images requires the extraction of structural
information on objects. Other representations describing the inner part of objects are therefore necessary:
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• Theskeletonis one of them. The skeleton describes objects by their axis of symmetry. It provides a
concise inner representation of objects appropriate for image analysis. The skeleton can be used to
extract various features such as the object thickness, as illustrated in Section 4.

• A mesh decompositionof the inner part of objects provides another example of a volume representation
of objects. The object is represented by a set of cells (tetrahedra or cubes) glued together along
their faces. This representation is suited to various applications, including physical modeling by finite
elements.

Extracting volume representations from surface representations is generally not obvious. For triangulated
surfaces, the work is greatly simplified if the surface is included in the Delaunay tetrahedrization of its
vertices. Surfaces satisfying this property are said to beDelaunay conforming. The skeleton can then be
deduced from the Voronoi graph of the surface vertices and the object can be decomposed into Delaunay
tetrahedra.

Different approaches have been proposed to constrain surfaces. One approach refines surfaces, by
adding points until every boundary triangles are forced into the Delaunay triangulation [10,26]. Some
reconstruction methods produce directly Delaunay conforming surfaces [2,6,11].

In this paper, we use the fact that we are considering iso-surfaces. Therefore, we propose a different
approach. We build iso-surfaces that are directly included in the Delaunay tetrahedrization of their
vertices. The proposed method is performed locally and remains valid, whatever is the size of volume
elements. Existing methods do not guarantee such a geometrical property. Our contribution is to build
iso-surfaces that are Delaunay conforming. We also prove that the constructed surface is a 2-manifold.

This construction allows us to derive the skeleton of objects, along with a volume representation.
This leads us to the second part of this paper, which focuses on the skeleton computation and filtering.
A well-known drawback of the skeleton transformation is its lack of continuity. Noise on the boundary
of an object may significantly change the aspect of its skeleton. A simplification algorithm is therefore
necessary to remove peripheral branches having no perceptual relevance.

Existing methods left unresolved some crucial aspect of the simplification problem. They do not study
the effect of noise on the skeleton. They depend on thresholds that are difficult to find automatically as
they change with the objects. In this paper, three questions are raised and tackled:
(1) What type of noise may affect real objects? A model of noise is proposed that turns out to be realistic

for a large amount of objects.
(2) What is the influence of this type of noise on the skeleton? The effect of noise on the skeleton is

studied and a characterization of noisy branches is deduced.
(3) How to select thresholds for simplification? A graph is introduced on which thresholds for

simplification can easily be selected.

Paper overview.The first part of this paper (Section 2) is devoted to the construction of Delaunay
conforming iso-surfaces. The second part (Section 3) focuses on skeleton computation and filtering.
Finally, in Section 4, some results on volumetric images are presented and an application to the thickness
computation of objects is described.

Notations. Let Z be the set of integers andR be the set of real numbers.Zd is the discreted-dimensional
space andRd the Euclideand-dimensional space. LetV ⊂ Rd be a set ofn points. Del(V ) denotes the
Delaunay tetrahedrization ofV , Vor(V ) denotes the Voronoi graph ofV and Hull(V ) denotes the convex
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hull of V , i.e., the smallest convex set inRd containingV . The boundary of any subsetA of R3 is denoted
by ∂A (∂A is the closure of the setA minus its interior points).

2. Delaunay conforming iso-surfaces

2.1. Image iso-surfaces and classical approximation method

A gray-levelvolumetric imageI is a mapping from a setU ⊂ Z3 onto the set of real numbersR. Each
element ofU is called avoxel. The imageI may be viewed as a sampling of a scalar continuous field
h on the vertices of this discrete grid. The set of points whereh takes the valueC defines asurfaceSC

(i.e.,SC = {M ∈ R3, h(M) = C}). In the following, we use the term “iso-surface” for any triangulated
surface that approachesSC . We assume the imageI is finite and its border is composed of only outer
voxels or of only inner voxels.

The most common method for computing iso-surfaces in images is certainly themarching-cubes(MC)
algorithm [21]. Its principle is to analyze the image locally using blocks of eight mutually adjacent voxels.
These blocks are called8-cubes. Within each 8-cube, a set of triangles is found which separatesinner
voxels(h(v) � C) from outer voxels(h(v) < C). A C-vertexof the iso-surface is defined as a point
lying on a grid edge between adjacent, inner and outer, voxels. A linear interpolation model is used
to estimate where the iso-surface intersects this edge and determine an appropriate position for theC-
vertex. Different sets of triangles may be constructed on the set ofC-vertices of an 8-cube. The chosen
triangulation influences the geometry and the topology of the iso-surface, and hence the properties of the
approximation.

The MC algorithm exhibits an arbitrary choice, which depends only on the inner or outer classification
of the 8-cube voxels. The vector gathering the classification (“inner” or “outer”) of the voxels of an
8-cube is called aconfiguration. There are 256 different configurations. This leads to 256 possible
triangulations within an 8-cube. The MC algorithm optimizes the running time of surface construction
by pre-computing a table associating each configuration to a triangulation. Some authors refine this
choice by using different kinds of interpolation or by exploiting gradient information (see [13] for a
survey). However, none of these methods consider the geometry of theC-vertices, which explains why
the computed iso-surface does not, in general, coincide with the Delaunay tetrahedrization.

2.2. Proposed method for building iso-surfaces

To build a triangulated iso-surface that is included in the Delaunay tetrahedrization of its vertices, we
use the iso-surface definition suggested in [17]. This definition has several interesting properties. It has
also been extended to arbitrary dimensions in [18]. It is based, on one hand, on the digital connectedness
of voxels and, on the other hand, on the location of theC-vertices on the grid.

In order that the paper be self-contained, we first briefly recall some definitions of digital and
combinatorial topology (more general definitions can respectively be found in [16] and [1]). After that,
we show how to construct iso-surfaces locally, 8-cubes by 8-cubes. In Section 2.3, we demonstrate that
our iso-surfaces have the property to be included in the Delaunay tetrahedrization of their vertices.
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2.2.1. Preliminary definitions

Definition 1 (6-, 18- and 26-adjacent voxels). Two voxels are said to be6-adjacentif their coordinates
differ of ±1 on exactly one coordinate. They are18-adjacent (respectively26-adjacent) if their
coordinates differ of±1 on one or two coordinates (respectively one, two or three coordinates).

Definition 2 (6-, 18- and 26-connectedness). LetA be a subset ofZ3. Two voxels a, b ∈ A are
ρ-connectedin A (for ρ ∈ {6,18,26}) if there exists a sequence of voxels ofA, starting witha and
ending withb, such that two successive voxels areρ-adjacent. The transitive closure of this relation is
theρ-connectedness, which definesρ-componentsin A.

In the following, aκ-connectedness is associated with the inner voxels, and aλ-connectedness is
associated with the outer voxels ofI . The pair(κ, λ) is called aconnectedness pair.

Definition 3 (Combinatorial manifold [12,14]). A2D combinatorial manifold(without boundary) is a
pair (G,F ), whereG is a graph andF is a set of loops overG with the following properties:

(i) every arc ofG is adjacent to exactly two loops,
(ii) for any vertex u, the set of loops incident tou can be arranged into a circular permutation

(f0, . . . , fk−1), k > 1, called theumbrellaof u, such thatfi is adjacent tofi+1 for any i, indices
taken modulok, and

(iii) any vertexu of G is incident to at least three arcs. A combinatorial manifold is said to be triangulated
if all loops have size 3.

Definition 4 (2-manifold inR3 [1]). A 2-manifold(without boundary) in R3 is a subset ofR3 for which
every point has a neighbourhood that is topologically equivalent to an open disk.

The topology of any 2-manifold inR3 can be represented by a combinatorial manifold. The converse
is not true: not every 2D combinatorial manifold can be embedded inR3 as a 2-manifold (for instance,
the Klein bottle). By definition, a 2-manifold has no self-intersection. Closed 2-manifolds inR3 are
orientable [1].

Definition 5. A surfaceS is said to be anε-approximation of the surfaceS0, if for any pointm ∈ S, there
exists a pointm0 ∈ S0 such thatd(m,m0) < ε.

2.2.2. κλ-iso-surface construction
In this section, we first construct a triangulated approximation of the iso-surface of levelC, as a 2D

combinatorial manifold without boundary. Since the construction depends on the connectedness pair
(κ, λ), we call the result aκλ-iso-surface. We enforceκλ-iso-surfaces to be identical toλκ-iso-surfaces
of the negative image ofI . It has been shown in [17] that this condition implies(κ, λ) is one of(6,18),
(6,26), (18,6) and(26,6). Therefore, we will only examine the connectedness pairs(18,6) and(26,6).
For a more complete description of the construction ofκλ-iso-surfaces, please refer to [17].

Following the MC principle,κλ-iso-surfaces are built locally, 8-cubes by 8-cubes. Any voxel of the
image is embedded intoR3 as a point. Each 8-cube is embedded intoR3 as a cube whose vertices are the
embeddings of the eight voxels of the 8-cube.
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Let H be an 8-cube ofI . Let I = {i1, . . . , il} be the set of inner voxels ofH andE = {e1, . . . , ek} be
the set of itsC-vertices. Forκ = 26, I is alwaysκ-connected. Forκ = 18, I is κ-connected except for
four configurations: the configurations with two diagonally opposite inner voxels (sayi1 andi2) and six
outer voxels (which induce twoκ-components). These four configurations are calleddisconnected. All
other configurations are calledconnected. For any connected configuration, thelocal C-convex hullof
H is defined as Hull(E ∪ I ). For any disconnected configuration, the inner voxeli1 (respectivelyi2) is
bordered by a set of threeC-verticesE1 (respectivelyE2); the local C-convex hullof H is then defined
as Hull(E1 ∪ i1) ∪ Hull(E2 ∪ i2).

TheC-edgesof H are defined as the edges of the localC-convex hull ofH that connect twoC-vertices.
TheseC-edges belongs by definition to the boundary of the localC-convex hull ofH . Let H be the
embedding ofH into R3 (i.e., a cube). TheC-edges ofH that lie on∂H are calledborderingC-edges, the
other ones are calledinsideC-edges. The borderingC-edges of any configuration can be arranged into a
set of loops, that are calledC-loops. Fig. 1 displays all the possible configurations and the corresponding
C-edges andC-loops. As illustrated by Fig. 2,C-edges depend both on the connectedness pair{κ,λ} and
on the geometry of theC-vertices. However, the borderingC-edges and, consequently, the amount and

Fig. 1. C-loops created for classical configurations and triangulation of these loops.C-loops over bordering
C-edges are displayed as solid thick lines, insideC-edges as dashed thick lines. The connectedness pair has an
influence on both the construction of theC-loops and their triangulation: (a)C-loops andC-edges created for
(κ,λ) ∈ {(6,18), (6,26)}; (b) when(κ,λ) ∈ {(18,6), (26,6)}, these configurations have the sameC-loops than in
(a), but different insideC-edges; (c) when(κ,λ) ∈ {(18,6), (26,6)}, these configurations have differentC-loops
than in (a); (d) special case when(κ,λ) ≡ (26,6) (a symmetric case exists when(κ,λ) ≡ (6,26)).

Fig. 2. Depending on the location ofC-vertices, theκλ-iso-surface built locally inside a given 8-cube may change.
From left to right,C-loops built onC-vertices,C-convex hulls andC-edges ((κ,λ) ∈ {(18,6), (26,6)}).
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Fig. 3. The figure displays the borderingC-edges that are built on the faces of 8-cubes according to the classification
(“inner” or “outer”) of their voxels. For cases (a), (b) and (c) the construction is independent of{κ,λ}. The case (d)
occurs whenλ = 6 andκ ∈ {18,26}. The case (e) occurs whenκ = 6 andλ ∈ {18,26}.

the length ofC-loops, are independent of the geometry of theC-vertices. The following theorem shows
that theC-vertices, theC-edges and theC-loops form a combinatorial surface.

Theorem 6. Let G be the graph whose vertices(respectively arcs) are theC-vertices(respectively the
borderingC-edges) of all the8-cubes of the image. The graphG together with the loops defined over the
arcs ofG by theC-loops is a2D combinatorial manifold without boundary. Moreover, it is triangulated
by the insideC-edges. The resulting set is a triangulated2D combinatorial manifold without boundary
denoted byT .

Proof. Since the imageI is finite and its border is composed of only inner voxels or only outer voxels,
every borderingC-edges belongs to two adjacent 8-cubes. As shown by Figs. 3 and 1, the bordering
C-edges defined on one 8-cube are identical to the borderingC-edges defined on the adjacent 8-cube.
Moreover, within each 8-cube, every borderingC-edge belongs to exactly oneC-loop. Thus, every arc of
G is adjacent to exactly two loops. Now, letc be aC-vertex. The pointc belongs to four 8-cubes. Within
each 8-cube, the pointc belongs to oneC-loop (see Fig. 1). If we consider the four 8-cubes aroundc

we can arrange the four loops into an umbrella. Sincec has four incident arcs, the first statement holds.
Fig. 1 also shows that, whichever is the 8-cube configuration, theC-loops are triangulated by the inside
C-edges, which concludes the argument.✷

Finally, we define theκλ-iso-surface of levelC as the embedding ofC-loops, triangulated byC-edges.

Theorem 7. Theκλ-iso-surface of levelC is a 2-manifold without boundary inR3.

Proof. Theκλ-iso-surface of levelC is defined as the embedding ofT in R3. The loops ofT have length
3. Every loop can be embedded as an open triangle between theC-edges that define it. LetM be the
subset of subsets ofR3 composed of theC-vertices, the openC-edges, and those open triangles. Within
each 8-cube, it is clear that these elements are pairwise disjoint (as defined over the localC-convex hull).
Now, two elements ofM that belong to two different 8-cubes cannot intersect by construction. As a
consequence, all the elements ofM are pairwise disjoint andM forms atriangulation (e.g., see [1]).
The embedding ofM into R3 is the subset ofR3 composed of the union inR3 of all the elements of
M (sometimes called thebodyof M). SinceT is a 2D combinatorial manifold without boundary, the
embedding ofM into R3 is a 2-manifold without boundary.✷
Theorem 8. Theκλ-iso-surface of levelC separatesκ-components of inner voxels fromλ-components
of outer voxels.
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Proof. (A complete proof can be found in [18, Theorem 22].) There is no segment linking twoκ-adjacent
inner voxels which intersects theκλ-iso-surface of levelC. The same holds forλ-adjacent outer voxels.
Now, each component of theκλ-iso-surface is a connected 2-manifold inR3. The Jordan–Brouwer
theorem (e.g., see [1]) concludes the argument.✷

Let r be the maximum distance between two 6-adjacent voxels ofI . The finer is the sampling, the
smaller isr and the better is theκλ-iso-surface approximation ofSC .

Theorem 9. Theκλ-iso-surface of levelC is a
√

3r-approximation of the surfaceSC .

Proof. Let e be anyC-vertex of theκλ-iso-surface of levelC. The vertexe lies between two voxelsa
andb such that eitherh(a) � C andh(b) < C or h(a) < C andh(b) � C. Sinceh is continuous, there
must be a pointm of the segment[ab] with h(m) = C. It is obvious that‖m − e‖ � r . We have just
shown that anyC-vertex of theκλ-iso-surface of levelC is at most at a distancer of SC . If we increase
the sampling density by a given factor, all the vertices of theκλ-iso-surface come closer toSC with the
same factor. We conclude the argument since every triangle of theκλ-iso-surface is defined locally and
has a size no greater than

√
3r . ✷

We have just exhibited a method to construct locally an iso-surface of levelC in an imageI . This
construction is performed 8-cube by 8-cube. Unlike the MC algorithm, the insideC-edges are dependent
on the geometry of the neighboringC-vertices: the precomputation of a table of 256 configurations is
not sufficient to extract the pieces of surface within one 8-cube. However, a careful case study has shown
that this task can be performed very efficiently [3].

2.3. Inclusion in the Delaunay graph

We will now prove that an iso-surface built as described above has the interesting property to be
included in the Delaunay tetrahedrization of its vertices. To establish this result, we first show that
Delaunay edges built inside an 8-cube do not depend onC-vertices located outside this 8-cube. In the
following, SC designates aκλ-iso-surface of levelC in the imageI , which is computed as described
above, andVC is the set of its vertices.

Theorem 10. Let {e1, e2, . . . , ek} be thek C-vertices of a given8-cube. Then

∂Hull
({ei}i=1,...,k

) ⊂ Del
({ei}i=1,...,k

) ⊂ Del(VC).

Proof. The first inclusion is immediate. To prove the second inclusion, we compute the intersection of
the smallest sphereB enclosingei andej with the discrete grid. This computation can be achieved by
simple geometrical considerations: we use the fact that for any pointv on the sphereB, the straight-lines
(vei) and (vej ) are orthogonal. LetP be the smallest straight parallelepiped enclosingei andej . The
vertices ofP are located on the sphereB. As P remains inside the considered 8-cube (see Fig. 4), the
sphereB does not intersect grid edges of other 8-cubes. Consequently, the sphereB contains no points
from E \ {e1, e2, . . . , ek} in its interior, which implies the second inclusion.✷
Theorem 11. SC ⊂ Del(VC).
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Fig. 4. To examine the intersection of the sphereB with diameter[eiej ], four different cases must be considered,
which correspond to different positions of theC-verticesei andej on the 8-cube. The smallest parallelepipedP

enclosingei andej has been drawn. It always lies inside the 8-cube. To understand how the sphere intersects the
discrete grid, the circles corresponding to the intersections of the sphere with horizontal planes passing througha

andb have also been drawn. Those circles do not intersect edges from other 8-cubes.

Proof. Each edge[ee′] of SC is a C-edge of some 8-cubeH . Two cases arise: eitherH forms a
connected configuration inI orH forms a disconnected configuration. Assume first thatH is a connected
configuration. LetI be the inner voxels ofH andE be the set ofC-vertices ofH . Then[ee′] is an edge
of the localC-convex hull ofH , i.e.,[ee′] is an edge of∂Hull(I ∪E). This implies that bothe ande′ are
extremal points of Hull(I ∪E). Sincee ande′ belong toE, they are also extremal points of Hull(E). The
segment[ee′] being an edge of Hull(I ∪ E), it must be an edge of Hull(E). We get[ee′] ⊂ ∂Hull(E).
Theorem 10 induces[ee′] ⊂ Del(VC). The case whereH forms a disconnected configuration can be
proven similarly. Since every edge ofSC belongs to Del(VC), every triangle ofSC belongs to Del(VC).
This concludes the argument.✷

3. Skeleton extraction from iso-surfaces

3.1. Computation

In this section, iso-surfaces are applied to the computation of the skeleton of objects. By definition, the
skeleton Sk(X) of an objectX is the locus of the centers of the maximal balls ofX. A ball B included in
X is said to be maximal if there exists no other ball included inX and containingB (Fig. 5).

Numerous methods have been proposed to extract the skeleton. They can be classified in two main
families: discrete methodsandcontinuous methods. Discrete methods work directly on binary images.
The skeleton is a set of pixels that is computed using distance transforms [8,27] or morphological
thinnings [19,20,22,23]. Continuous methods are generally based on the Voronoi graph of a set of points
located on the boundary of the object [4,7,9,24].

In this paper, we focus on the second family of methods. We use the approach proposed by
Boissonnat [5]. The input is a triangulated surfaceS which approaches the boundary of the objectX. Let
V be the set of vertices ofS. If the surfaceS is included in the Delaunay tetrahedrization Del(V ), there
are exactly two distinct types of Delaunay tetrahedra:inner tetrahedralying insideS andouter tetrahedra
lying outsideS. The skeleton is defined as a subset of the Voronoi diagram. This subset is the dual of the
inner Delaunay elements. The skeleton is a set of Voronoi polygons, edges and vertices making pieces
of surfaces in 3D. This method works only if the surfaceS is included in the Delaunay tetrahedrization
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Fig. 5. Terminology relative to skeletons.

of its vertices Del(V ). The iso-surfaces constructed in the previous part satisfy this condition and can
therefore be used to compute the skeleton.

Depending on the choice of inner and outer connectedness, different types ofκλ-iso-surfaces can be
generated for the same volumetric data and the same thresholdC. We use the connectedness pair(6,18)
in order to minimize the amount of loops in the object. This improves the efficiency of the filtering step.

3.2. Filtering

Iso-surfaces extracted from volumetric images may happen to be slightly noisy. In particular, noise
originates from the quantification step, as gray-levels take a finite number of values ranging from 0 to
255. We will consider that sample points are not located exactly on the boundary of the object but have the
form pi + ei wherepi belongs to the boundary of the real object andei is a “small” vector representing
the perturbation of the pointpi around the boundary.

Even if negligible compared to the size of voxels, presence of noise on sample points may lead to
a radical change in the skeleton. For instance, in the case of a sphere, the shift of one sample point
towards the center of the sphere will change the whole Delaunay tetrahedrization, leading to a completely
different approximated skeleton. Indeed, the shifted point will become the Delaunay neighbor of every
other points.

A filtering step is therefore necessary to remove peripheral branches associated to nonsignificant
parts of the object. In order to preserve the skeleton homotopy type, the filtering step removes the
skeleton points located on the border of the skeleton. Different removing criteria have been proposed
in the literature. One can for instance measure the difference between the initial shape and the shape
reconstructed from the simplified skeleton. Branches are shortened as long as this difference remains
smaller than a fixed threshold [9]. More complex criteria may be found in [24].

In the following, we will distinguish three types of skeleton points:simple pointswhose maximal
sphere touches the object boundary on two contact points,endpointswhose maximal sphere touches the
object boundary on one point andmultiple pointswhose maximal sphere touches the boundary on at least
three contact points. Our filtering criterion is based on the two following notions (Fig. 5).

Definition 12 (Thickness). The thicknessρ(s) at a points of the skeleton is the radius of the maximal
ball centered ons.
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Definition 13 (Bisector angle [28]). Lets be a skeleton point. Ifs is a simple point, leta andb be the
two contact points of the maximal ball centered ons. The bisector angleα(s) is the angleâsb lying
between 0 andπ . If s is an endpoint,α(s) = 0. If s is a multiple point,α(s) = max(âsb), wherea andb

are any two contact points of the maximal ball centered ats.

Thickness and bisector angle can both be defined in Euclidean spaces of arbitrary dimension. The
thickness function is continuous. The bisector angle function is continuous except at multiple points. The
thickness is extremum where the bisector angle equalsπ and the thickness equals 0 at endpoints of the
skeleton.

In practice, the skeleton is approximated with the Voronoi graph of sample points. Therefore, thickness
and bisector angle need to be approximated as well. We restrict our computation to the Voronoi vertices
as they provide a dense sampling of the skeleton. Lets designates a Voronoi vertex of the approximated
skeleton and[p0p1p2p3] its associated Delaunay tetrahedron. The thicknessρ(s) and the bisector angle
α(s) are approximated as follows:

ρ(s) = d(s,p0) = d(s,p1) = d(s,p2) = d(s,p3),

α(s) = max
i �=j

(p̂ispj ).

Indeed, the sphere passing through the four pointsp0, p1, p2, p3 approximates a maximal ball. In
the most general case,s approaches a simple point of the skeleton and the maximal ball intersects the
boundary at two contact pointsa andb. Therefore, the four pointsp0, p1, p2, p3 tend either to the contact
point a or to the contact pointb. The anglep̂ispj between any two pointspi andpj is either close to 0
or close to the bisector angle. By taking the maximum of̂pispj , we get an approximation of the bisector
angle.

In order to visualize the effect of noise, one can represent the verticess of the skeleton on a graph
entitled theparameter graphin which vertices are plotted according toρ(s) againstα(s) instead of their
classical Cartesian coordinates. Thus, each vertexs of the skeleton is associated with a point having
coordinates(α(s), ρ(s)) in the parameter graph.

When there is no noise (synthetic object of Fig. 6(a)–(c)), the skeleton structures are easily identified
within the parameter graph. Endpoints lie on the straight-line(α = 0) and branches are represented by
curves, reflecting the continuity of the thickness and the bisector angle.

When noise is added to the shape boundary (Fig. 6(d)–(f)), the aspect of the parameter graph changes.
Indeed, most of the vertices that were initially lying on the branches of the skeleton are now scattered
next to the bottom left of the parameter graph. They plot an hyperbolic-like form.

The same phenomenon occurs with objects obtained from binary images. However, in the latter case,
points organize themselves in parallel strata (Fig. 6(g)–(i)).

It is possible to explain that the noise induces an hyperbolic-like form. Lets be a vertex of the skeleton,
a andb the two points of the boundary such thatα(s) = âsb andρ(s) = d(a, s) = d(b, s). The set of
verticess generated by two boundary pointsa andb at distancel from each other can be described by
the equation

ρ = l

2sin(α/2)
.
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Fig. 6. (a,d,g) Skeleton of a synthetic object, of the same object after a slight perturbation of sample points on the
boundary, and of an object extracted from a binary image. (b,e,h) Simplified skeletons. (c,f,i) Parameter graphs and
thresholds chosen for filtering.

If one plotsρ as a function ofα with a fixed value forl on the parameter graph, a curve is obtained
which perfectly fits the hyperbolic-like form (Fig. 7). With objects obtained from binary images, the
distancel between two boundary points is quantified (owing to the discrete representation of binary
images and the half-integer values of the sample point coordinates). This is confirmed by the presence of
strata in the noise hyperbolic-like form.
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Fig. 7. Modeling noise withρ = l/(2 sin(α/2)).

Consequently, the noise disturbs neighbourhood relationships in the Voronoi graph. Boundary points
at distancel from each other generate parasite branches on the skeleton. When noise remains small,l is
also small. Perturbations due to noise stay local.

The previous discussion shows that noisy vertices of the skeleton are characterized by a small bisector
angle or a small thickness. Consequently, we propose to remove an endpoints of the current skeleton if
the two parametersα(s) andρ(s) satisfy

(α(s) < α0) or (ρ(s) < ρ0).

The proposed criterion depends on two thresholdsα0 and ρ0. The first one,α0 controls the lost of
information. Ifα0 equals 0, the skeleton is never simplified. The second thresholdρ0 gives an indication
of the object size. The two thresholds can be selected directly on the parameter graph. Indeed, in this
representation, our simplification method consists in removing progressively endpoints located below the
thick polygonal line plotted on the parameter graphs (Fig. 6). This polygonal line cuts off the hyperbolic-
like form from the rest of the graph.

The hyperbolic-like form of noise on the parameter graph suggests that a better filtering would be
obtained with the hyperbolic lineρ = l/(2sin(α/2)). However, this approach did not give convincing
results. By doing so, the filtering depends on the unique parameterl, against two independent parameters
ρ0 andα0 before. As a consequence, the filtering parameterization is less flexible.

4. Results and applications

Some results on volumetric images are presented in Fig. 8. The first two volumes were generated
synthetically and correspond respectively to the discretization of a parallelepiped and an ellipsoid. As
expected, the skeleton computation provides pieces of planes and an ellipse. The second and third
volumes are real images corresponding respectively to a bone sample and a human heart. The volume
sizes are 30× 30× 30 and 85× 85× 98. The amount of vertices on each iso-surface is 5822, 2376,
3272 and 36640, respectively. The running time for computing both the iso-surface and the skeleton was
respectively 23, 3, 6 and 115 seconds on an SGI O2 R4000. We emphasize that the surface portions
making the skeleton have a smooth aspect. Such a smooth aspect is particularly tricky to achieve with
purely discrete approaches.
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Fig. 8. (a) Delaunay conforming iso-surfaces. (b) Skeletons extracted from iso-surfaces. (c) Skeletons after filtering.
(d) Parameter graphs. Two different thresholds have been applied on the first iso-surface (the box). It shows the
influence of the different parts of the parameter graph.

In many applications, the thickness of an object is an important characteristic feature. In the previous
section, thickness has been defined at any point of the skeleton. It is interesting to extend this definition
at any pointm on the boundary of the object. We define the thickness atm as the radius of the maximal
ball passing throughm. Some results are presented in Fig. 9. The thickness has been computed after
simplification of the skeleton. One can for instance notice a difference of thickness between the two
heart ventricles. The thickness is maximal at the branching point of the bone sample.
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Fig. 9. Computation of thickness on the object boundary.

5. Conclusion

In this paper, we have constructed a new type of iso-surfaces: they are 2-manifolds without boundary
in R3 and they are included in the Delaunay graph of their vertices. The proof uses simple geometrical
considerations and holds, whatever is the voxel size. The Voronoi diagram is used to compute the skeleton
of these iso-surfaces. We analyze the influence of noise on the skeleton. We deduce a characterization
of noisy branches and a simplification method for continuous skeletons. Future work includes the use
of the skeleton to extract parameters and segment objects. It would also be interesting to verify that
κλ-iso-surfaces are Delaunay conforming for arbitrary dimension, since their definition is not restricted
to R3.
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