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Abstract. Recent works have indicated the potential of using curvature
as a regularizer in image segmentation, in particular for the class of
thin and elongated objects. These are ubiquitous in bio-medical imaging
(e.g. vascular networks), in which length regularization can sometime
performs badly, as well as in texture identification. Curvature is a second-
order differential measure, and so its estimators are sensitive to noise.
The straightforward extentions to Total Variation are not convex, making
it a challenge to optimize. State-of-art techniques make use of a coarse
approximation of curvature that limit practical applications.

We argue that curvature must instead be computed using a multigrid
convergent estimator, and we propose in this paper a new digital cur-
vature flow which mimicks continuous curvature flow. We illustrate its
potential as a post-processing step to a variational segmentation frame-
work.

Keywords: Multigrid convergence · Digital estimator · Curvature · Shape
Optimization · Image Segmentation.

1 Introduction

Geometric quantities are particularly useful as regularizers, especially when ob-
ject geometry is known a priori. Length penalization is a general purpose regular-
izer and the literature is vast on models that make use of it [3, 1]. However, this
regularizer shows its limitations when segmenting thin and elongated objects, as
it tends to return disconnected solutions. Such drawback can be overcomed by
injecting curvature regularization [7].

One of the first successful uses of curvature in image processing is the in-
painting algorithm described in [12]. The author evaluates the elastica energy
along the level lines of a simply-connected image to reconstruct its occluded
parts. The level lines property of non-intersection allows the construction of an
efficient dynamic programming algorithm. Nonetheless, it is still a challenging
task to inject curvature in the context of image segmentation.
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The state-of-art methods are difficult to optimize and not scalable [7, 17,
13]. In order to achieve reasonable running times, such approaches make use
of coarse curvature estimations whose approximation error is unknown. On the
other hand, improving the quality of curvature has an important impact on the
accuracy of the results, but is too computationnaly costly in these methods.
Recently, new multigrid convergent estimators for curvature have been proposed
[16, 5, 15], motivating us to search for models in which they can be applied.

In this work, we investigate the use of a more suitable curvature estimator
with multigrid convergent property and its application as a boundary regularizer
in a digital flow minimizing its squared curvature. Our method decreases the
elastica energy of the contour and its evolution is evaluated on several digital
flows. Finally, we present an application of the model as a post-processing step
in a segmentation framework. The code is made available at github1.

Outline. Section two reviews the concept of multigrid convergence and high-
lights its importance on the definition of digital estimators. Next, we describe
two convergent estimators used in this paper, one for tangent and the other for
curvature. They are used in the optimization model and in the definition of the
digital elastica. Section three describes the proposed curvature evolution model
along with several illustrations of digital flows. Section four explains how to use
the evolution model as a post-processing step in a image segmentation frame-
work. Finally, sections five and six discuss the results and point directions for
future work.

2 Multigrid Convergent Estimators

A digital image is the result of some quantization process over an object X
lying in some continuous space of dimension 2 (here). For example, the Gauss
digitization of X with grid step h > 0 is defined as

Dh(X) = X ∩ (hZ)2.

Given a object X and its digitization Dh(X), a digital estimator û for some
geometric quantity u is intended to compute u(X) by using only the digitiza-
tion. This problem is not well posed, as the same digital object could be the
digitization of infinitely others objects very different from X. Therefore, a char-
acterization of what is a good estimator is necessary.

Let u be some geometric quantity of X (e.g. tangent, curvature). We wish
to devise a digital estimator û for u. It is reasonable to state that û is a good
estimator if û(Dh(X)) converges to u(X) as we refine our grid. For example,
counting pixels is a convergent estimator for area (with a rescale of h2); but
counting boundary pixels (with a rescale of h) is not a convergent estimator
for perimeter. Multigrid convergence is the mathematical tool that makes this
definition precise. Given any subset Z of (hZ)2, we can embed it as a union
of axis-aligned squares with edge length h centered on the point of Z. The

1 https://www.github.com/danoan/DGCI19
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topological boundary of this union of cubes is called h-frontier of Z. When
Z = Dh(X), we call it h-boundary of X and denote it by ∂hX.

Definition 1 (Multigrid convergence for local geometric quantites) A lo-
cal discrete geometric estimator û of some geometric quantity u is (uniformly)
multigrid convergent for the family X if and only if, for any X ∈ X, there ex-
ists a grid step hX > 0 such that the estimate û(Dh(X), x̂, h) is defined for all
x̂ ∈ ∂hX with 0 < h < hX , and for any x ∈ ∂X,

∀x̂ ∈ ∂hX with ‖x̂− x‖∞ ≤ h, ‖û(Dh(X), x̂, h)− u(X,x)‖ ≤ τX(h),

where τX : R+ \ {0} → R+ has null limit at 0. This function defines the speed of
convergence of û towards u for X.

For a global geometric quantity (e.g. perimeter, area, volume), the definition
remains the same, except that the mapping between ∂X and ∂hX is no longer
necessary.

Multigrid convergent estimators give us a quality certificate and should be
preferred over non-multigrid convergent ones. In the next section we describe
two estimators that will be important for our purpose.

2.1 Tangent and Perimeter Estimators

The literature presents several perimeter estimators which are multigrid conver-
gent (see [4, 6] for a review), but in order to define the digital elastica we need
a local estimation of length and we wish that integration over these local length
elements gives a multigrid convergent estimator for the perimeter.

Definition 2 (Elementary Length) Let a digital curve C to be represented as
a sequence of grid vertices in a grid cell representation of digital objects (in grid

with step h). Further, let θ̂ to be a multigrid convergent estimator for tangent.
The elementary length ŝ(e) at some grid edge e ∈ C is defined as

ŝ(e) = hθ̂(l) · or(e),

where or(e) denotes the grid edge orientation.

The integration of the elementary length along the digital curve is a multigrid
convergent estimator for perimeter if one uses the λ-MST [10] tangent estimator
(see [9]).

2.2 Integral Invariant Curvature Estimator

Generally, an invariant σ is a real-valued function from some space Ω which
value is unnafected by action of some group G on the elements of the domain

x ∈ Ω, g ∈ G, σ(x) = v ←→ σ(g · x) = v.

Perimeter and curvature are examples of invariants for shapes on R2 with re-
spect to the euclidean group (rigid transformations). Definition of integral area
invariant and its one-to-one correspondence with curvature is proven in [11].
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Definition 3 (Integral area invariant) Let X ∈ R2 and Br(p) the ball of
radius r centered at point p. Further, let 1X(·) be the characteristic function of
X. The integral area invariant αX,r(·) is defined as

∀p ∈ ∂X, σX,r(p) =

∫
Br(p)

1X(x)dx.

The value σX,r(p) is the intersection area of ball Br(p) with shape X. By
locally approximating the shape at point p ∈ X, one can rewrite the intersection
area σX,r(p) in the form of the Taylor expansion [14]

σX,r(p) =
π

2
r2 − κ(X, p)

3
r3 +O(r4),

where κ(X, p) is the curvature of X at point p. By isolating κ we can define
a curvature estimator

κ̃(p) :=
3

r3

(
πr2

2
− σX,r(p)

)
, (1)

Such approximation is convenient as one can simply devise a multigrid con-
vergent estimator for area.

Definition 4 Given a digital shape D ⊂ (hZ)2, a multigrid convergent estimator

for area Ârea(D,h) is defined as

Ârea(D,h) := h2Card (D) . (2)

In [5], the authors combine the approximation(1) and digital estimator (2)
to define a multigrid convergent estimator for curvature.

Definition 5 (Integral Invariant Curvature Estimator) Let D ⊂ (hZ)2 a
digital shape. The integral invariant curvature estimator is defined as

κ̂r(D,x, h) :=
3

r3

(
πr2

2
− Ârea (Br(x) ∩D,h)

)
.

The estimator is robust to noise and can be extended to estimate the mean
curvature of three dimensional shapes.

3 Digital Curvature Evolution Model

Our goal is to deform a digital object in order to minimize the elastica energy
along its contour. Our strategy is to define the digital elastica by using the
elementary length and the integral invariant curvature estimators and minimize
its underlying binary energy. However, the derived energy is of order four and
difficult to optimize. Therefore we propose an indirect method to minimize it.
Such method can be interpreted as a gradient flow of the elastica energy, but it
is completely defined in discrete terms.
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3.1 Ideal Global Optimization Model

We evaluate the quality of a boundary by evaluating the elastica energy along
it. In continuous terms, the elastica energy along the boundary of a region X is
defined as

E(X) =

∫
∂X

(α+ βκ2)ds, for α ≥ 0, β ≥ 0.

We are going to use the digital version of the energy, using multigrid conver-
gent estimators. The energy, in this case, is also multigrid convergent.

Ê(Dh(X)) =
∑

x∈∂Dh(X)

ŝ(x)
(
α+ βκ̂2r(Dh(X), x, h)

)
, (3)

where ∂Dh(X) denotes the 4-connected boundary of Dh(X). In the following we
omit the grid step h to simplify expressions (or, putting it differently, we assume
that X is rescaled by 1/h and we set h = 1).

A segmentation energy can be devised by including some data attachement
term g in (3), but we need to restrict the optimization domain to consistent
regions. We cannot properly estimate length and curvature along anything dif-
ferent from a boundary. Let Ω be the digital domain and T the family of subsets
of Ω satisfying the property

D ∈ T =⇒ D ⊂ Ω and 4B(∂D),

where 4B(·) is the 4-connected closed boundary predicate.
For some γ > 0, the segmented region D? is defined as

D? = arg min
D∈T

∑
x∈∂D

ŝ(x)
(
α+ βκ̂r

2(D,x)
)

+ γ · g(D). (4)

In its integer linear programming model [17], Schoenemann restricts the op-
timization domain by enforcing a set of constraints that enforces compact sets
as solutions. However, the main difficulty here is the energy order, which is of
order four. We are going to explore an alternative strategy.

3.2 Non Zero Curvature Identification

We can use the curvature estimator to detect regions of positive curvature. Given
a digital object D embedded in a domain Ω, we define its pixel boundary set
P (D) as

P (D) = { x | x ∈ D, |N4(x) ∩D| < 4 } ,

where N4(x) denotes the 4-adjacent neighbor set of x (without x). The following
optimization regions will be important in our process.
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O = P (D) Optimization region.
F = D − P (D) Trust foreground.
B = Ω −D Trust background.
A = P (F ) ∪ P (B) Computation region.

Note that our definition of the optimization region guarantees that only con-
nected solutions are produced. The computation region is defined around O for
symmetric issues. We proceed by minimizing the squared curvature energy along
A with respect to the optimization region O.

Y ? = arg min
Y ∈{0,1}|O|

∑
p∈A

κ̂2r(p). (5)

We expand the squared curvature esimator for a single point p ∈ A using
(1). Define constants c1 = (3/r3)2, c2 = πr2/2. Hence,

κ̂2r(p) = c1 ·
(
c2 − σD,r(p)

)2
= c1 ·

(
c22 − 2c2σD,r(p) + σD,r(p)2

)
.

Let Fr(p) ⊂ F to denote the intersection set between the estimating ball
applied at p with the foreground region. The subset Yr(p) ⊂ Y is defined
analagously. Substituting σD,r(p) = |Fr(p)|+

∑
yi∈Yr(p)

yi.

κ̂2r(p) = c1 ·

 c22 − 2c2 · |Fr(p)|+ |Fr(p)|2 + 2 (|Fr(p)| − c2) ·
∑

yi∈Yr(p)

yi +

 ∑
yi∈Yr(p)

yi

2


Packing constants C = c22 − 2c2 · |Fr(p)|+ |Fr(p)|2.

κ̂2r(p) = c1 ·

C + 2 (|Fr(p)| − c2) ·
∑

yi∈Yr(p)

yi +
∑

yi∈Yr(p)

y2i + 2 ·
∑

yi,yj∈Yr(p)
i<j

yiyj


By ignoring constant and multiplication factors and using the binary char-

acter of the variables, problem (5) is equivalent to

Y ? = arg min
Y ∈{0,1}|O|

∑
p∈A

(1 + |Fr(p)| − c2) ·
∑

yi∈Yr(p)

yi +
∑

yi,yj∈Yr(p)
i<j

yiyj

. (6)
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We use r = 3 and QPBOP to optimize (6). The optimization method is
further discussed in section 3.4. Evaluation of the model on a digital square
produces figure 1a.

(a) (b) (c)

Fig. 1: Figure (a): White pixels are labeled-one variables; Figure (b): Removal
of labeled-one pixels; Figure (c): Regions of interest: Background (black); Fore-
ground (dark gray); Computation (light gray); and Optimization (white) regions.

We interpret positive curvature at some point p as a lack of intersection points
between the digital object and the estimating ball. The curvature can be reduced
if estimating ball is pulled towards the interior of the digital object, which is done
by removing the highlighted pixels in figure 1a. Points with negative curvature
are equally detected if we evaluate the model in the digital object complement.

3.3 Digital Curvature Flow

We derive the digital curvature flow by iteratively evaluating model (6) with
a slight modification. We extend the computation region to take into account
more level sets of the original object. As a practical consequence, zones of high
curvature are more likely to be detected, leading to a smaller number of unlabeled
pixels by QPBOP.

A =
⋃
i≤3

∂F−i ∪ ∂B−i,

where the −i exponent means an erosion by a square of side i. Figure 1c illus-
trates the different regions of the optimization model.

At each flow step, the model is evaluated twice. In the second evaluation,
we take care of concavities. The model is executed on D+1, the complement of
the dilation by a square of side one, and we swap foreground and background
regions. Figure 2 presents several digital curvature flows.

We observe that the choice of ball radius (r) and level sets (ls) should consider
the image scale. For example, using a too big radius might lead to a disconnected
intersection zone and the accuracy of the estimator is compromissed. That ex-
plains the difference in flows in figure 2. In practice, we observe that using a
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ball of radius 3 is sufficient to produce good results while achieving a reasonable
running time.

(a) r = 3, ls = 3

(b) r = 5, ls = 5

(c) r = 10, ls = 10

(d) r = 5, ls = 5 (1.5× scaling)

Fig. 2: Digital curvature flow for four different shapes. A total of 20 iterations
were done for each flow, except for (c) (7 iterations). Curves are displayed every
2 iterations. The initial curve is in red and the end curve in blue.
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Energy/Instance Ball (0.156) Triangle (2.55) Square (1.81) Flower (4.196)

r = 3, ls = 3 0.192 0.335 0.286 0.298

r = 5, ls = 2 0.156 0.556 0.423 1.477
r = 5, ls = 3 0.166 0.375 0.321 0.364
r = 5, ls = 4 0.207 0.508 0.311 0.174
r = 5, ls = 5 0.193 0.52 0.278 0.163

r = 10, ls = 10 0.216 1.33 0.333 0.159

Fig. 3: Evaluation of digital elastica (α = 0) for start and end curves of the flow.
Except for the ball, all the elastica energies were decreased significantly.

3.4 Optimization Method

Energy (6) is non-submodular and optimizing it is a difficult problem, which re-
strict ourselves to heuristics and approximation algorithms. The QPBO method
[8] transforms the original problem in a max-flow/min-cut formulation and re-
turns a full optimal labeling for submodular energies. For non-submodular en-
ergies the method is guaranteed to return a partial labeling with the property
that the set of labeled variables is part of an optimal solution. That property is
called partial optimality.

In practice, QPBO can leave many pixels unlabeled. There exist two ex-
tensions of QPBO that soften this limitation: QPBOI (improve) and QPBOP
(probe). The first is an approximation method that is guaranteed to not in-
crease the energy, but we lost the property of partial optimality. The second is
an exact method which is reported to label more variables than QPBO. We use
QPBOP. The extended computation region also regularizes the energy and we
have checked that it induces a higher number of labeled variables.

4 Application in Image Segmentation

The digital curvature flow can be applied as a post-processing step in an image
segmentation framework. We use graph cut [2] as segmentation method and we
execute the flow for n iterations. We include the graph cut data attachement
term g and standard length penalization s to the flow energy.

min
Y

∑
y∈Y

(α · s(y) + γ · g(y)) + β ·
∑
p∈A

κ̂2r(p). (7)

Let N4(p) to denote the four neighborhood of pixel p. Length penalization is
defined as

s(p) =
∑

pk∈N4(p)

(p− pk)
2
.

In Figure 4 we show some results. The flow clearly regularizes the contour of
figures produced by segmentation via grab cut. In both figures, the flow is able
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to correct zones of high positive curvature and expand regions of low negative
curvature, but without invading the background zone. Nonetheless, the flow does
not expand zones of convexity. In addition, as we follow a local strategy, we are
unable to expand some zones that clearly belongs to the segmented object, like
the cow’s leg.

5 Conclusion

We have shown that the integral invariant curvature estimator can be integrated
in an optimization model and can be applied together with classical penaliza-
tion terms as length and data attachement in an image processing task. We
demonstrated its potential by designing a digital curvature flow that mimicks
continuous flow in an accurate way. We showed then how it can be used as a
post-processing tool in an image segmentation framework.

We have some directions for future work. First, optimize the code and eval-
uate a runtime analysis to compare with competitor methods. We also pretend
to reformulate the model in [17] using the digital estimator κ̂r. We believe that
we can recover better results and with a lower running time.
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Fig. 4: Digital flow post-processing results for a total of 5 iterations (α = 0.1, β =
1, γ = 1).
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