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Abstract

In order to define consistent models and algorithms for image analysis, many topolog-
ical representations of images have been proposed. Unfortunately the most generic ones
are often not explicitly related, and properties exhibited on one representation are unknown
for other representations. The aim of this paper is to show how two different topological
representations of images, namely theorder representation (developped by Bertrandet al.)
and thecomplex representation using strong weak lighting functions(studied by Ayalaet
al.) may be related in such a way that the results and algorithms proved on one may be
applied to the other and conversely.

1 Introduction

The study of the topological properties of discrete spaces is an active field of research. Different
approaches have been proposed to represent the support of the images and describe the links
between their elements (e.g. pixels in 2D, voxels in 3D). Most of their results and algorithms
seem to be model dependent. Nevertheless there are often bridges between these approaches
which once discovered could allow the transfer of theoretical results and practical algorithms
from one to another. This paper takes an interest in two of these approaches and aims to explicit
their relationship. The first one is a work conducted by Bertrandet al. [1, 2] and use the
order representation. From this point of view the elements of the image are represented by the
“smallest” elements relative to the order whereas the other elements define the links between
them. The second one is based on the approach of Ayalaet al. [3, 4, 5] which considers
the support of an image as afinite polyhedral complexequipped with a particular function
calledstrong weak lighting function. In this case the elements of the image are represented by
the cells of maximal dimension and the cells of lesser dimension connect them. Both models
propose formal ways to define several connectednesses between the elements of the image,
that is several methods to select only the links of interest (for a given purpose) between the



elements of the image. These two approaches are compliant with classical connectednesses
(for example those introduced by Rosenfeld) and also create new ones. Our contribution is to
show that, one can construct complexes from orders and orders from complexes in such a way
that the results found by Bertrandet al. and by Ayalaet al. hold for both models. We first
present the main characteristics of both orders and abstract cell complexes and the ways to go
from one to the other. We then explicit the relations between their topologies and finally show
the correspondence between the construction of connectedness on orders and on complexes
equipped with a strong weak lighting function. We will finally list briefly the advantages each
model may take of the other.

2 Order and Complexes

2.1 Definitions

This section presents some definitions related to orders and complexes and introduces mappings
for building complexes from orders and orders from complexes. For the orders we follow the
notations defined by Bertrandet al. in [1, 2].

An order is a pair|X| = (X,α), whereX is a set andα a reflexive, antisymetric, and
transitive binary relation. In the sequel we denoteβ the inverse ofα andθ the union ofα andβ.
Moreover we only consider a restricted family of orders, calledCF orders, that arecountable,
i.e.X is countable, andlocally finite, i.e. ∀x ∈ X, θ(x) is finite.

Some particular sets can be associated to each elementx of X. The simplest ones are its
α-adherence, α(x) = {y ∈ X; (x, y) ∈ α} and itsstrict α-adherence, α�(x) = α(x)\{x}. We
also callα-chainevery fullyα-ordered subset of|X|. If |X| is CF, everyα-chain is finite and
its length is equal to the number of its elements less one. If we only consider a subsetS of X
we denoteα|S the reflexive, antisymetric, and transitive binary relationα ∩ S × S.

An abstract cell complexC = (E,<, dim) is a setE of abstract elements associated with
an irreflexive, antisymetric, and transitive binary relation< ⊆ E × E calledborder (or face)
relationand a mappingdimensiondim : E → I ⊆ Z+ such that∀(e, e′) ∈ E × E, with e′ < e,
dim(e′) < dim(e).

In the sequel, thestar of a celle of C will be denotedst(e) and itscombinatorial closure
cl(e).

2.2 Associated orders and complexes

It may be easily seen that there exists a1− 1 mappingf that builds an order|XC | = (XC , αC)
from an abstract cell complexC = (E,<, dim) such that∀e ∈ E, ∃!f(e) ∈ XC and∀(e, e′) ∈
E × E with e < e′ or e = e′, (f(e), f(e′)) ∈ αC . This transformation loses, in general,
the notion of dimension. Proving the existence of a mapping that constructs an abstract cell
complex from an order and effectively building one is less trivial since orders have no notion
of dimension. We first restrain our study to CF-orders since non countable orders cannot be
mapped onto a complex. The intuition is to partitionX in a finite number of subsets and to
attribute to each element a number according to the unique subset it belongs to.



As the order is locally finite, there exists a subsetX0 of X, whose elements have an empty
strictα-adherence. Moreover all other elements ofX are linked by at least oneα-chain to an
element ofX0 and theα-chains between an element ofX0 and another element ofX have a
finite length. There exists then an integerk such that the length of everyα-chain on|X| is less
than or equal tok. Moreover for eachx ∈ X there exists an integeri ≤ k such thati is the
maximal length of all theα-chains beginning atx and ending at an element ofX0. X may then
be partitionned inXi, i = 0..k such thatx ∈ Xi if the maximal length of theα-chains from
X0 to x is i. This partition ofX is calledα-decompositionof |X| and is indeed the family
F = {X0, X1, ..., Xk} such that :
X0 = {x ∈ X, α�(x) = ∅},
∀i ∈ {1, . . . , k}, Xi = {x ∈ S, S = X\

⋃j=i−1
j=0 Xj, α

�
|S(x) = ∅},

Xk 6= ∅ andX =
⋃i=k
i=0 Xi.

For eachx ∈ X, there exists theni ∈ [0..K] such thatx ∈ Xi. Letxa andxb be respectively
elements ofXi andXj such thatxb ∈ α�(xa) then we deduce from the construction of the
partition thati > j. This means that an element of|X| “less” than another according toα is
associated to a lesser integer number. We call therefore this number the dimension ofx and
denote itdimα(x). The dimension of each element of|X|may be recursively computed.

Property 1 : Let x be an element of|X|,
dimα(x) = 0 iff α�(x) = ∅
dimα(x) = 1 + maxmi=1(dimα(yi)) with α�(x) = {yi, i ∈ [1..m]}

We deduce from this how to construct a function that builds an abstract cellar complex from
a CF-order.

Theorem (Order and abstract cell complex) : Theabstract cell complexC = (E,<, dim),
associated with the CF-order|X| = (X,α), is defined by the mapψ such that :
∀x ∈ X, ∃!ψ(x) ∈ E (ψ 1-1 mapping fromX toE),
∀(x, x′) ∈ X ×X such thatx′ ∈ α�(x), ψ(x′) < ψ(x)
∀x ∈ X, dim(ψ(x)) = dimα(x)

In such a complex, the faces of a celle are precisely the images byψ of the elements of the
strictα-adherence ofψ−1(e). In the sequel we will be interested in another complex that may
be built from a CF-order. We call it thedual abstract cell complexof the order.

Theorem (Order and dual abstract cell complex) : The dual abstract cell complexC∗ =
(E∗, <∗, dim∗), associated with the CF-order|X| = (X,α), is defined by the mapψ∗ such that
:
∀x ∈ X, ∃!ψ∗(x) ∈ E∗ (ψ∗ 1-1 mapping fromX toE∗),
∀(x, x′) ∈ X ×X such thatx′ ∈ β�(x), ψ∗(x′) <∗ ψ∗(x) (ψ∗ isomorphism from(X, β�) to

(E∗, <∗)),
∀x ∈ X, dim(ψ∗(x)) = dim∗α(x) with dim∗α = maxx∈X{dimα(x)} − dimα.

The dual abstract cell complex of an order(X,α) is generallynot the sameas the abstract
cell complex of the dual order(X, β). The dimensiondim∗α is indeed different fromdimβ in



most cases. We prefer using the dual abstract cell complex of an order because it is, by con-
struction, apure1 complex. In such a complex, the faces of a celle are precisely the images by
ψ∗ of the elements of the strictβ-adherence ofψ∗

−1
(e).

Finally, with an informal notation, we remark that an-complexC such thatψ(ψ−1(C)) = C
(resp.ψ∗(ψ∗

−1
(C)) = C) must have the following property : everyi-cell of C (i ∈ [0..n]) has

at least ak-face for eachk ∈ [0, i− 1] (resp. is face of ak-cell, k ∈ [i+ 1, n]). The order built
with ψ−1 (resp.ψ∗

−1
) from such a complex keeps implicitly the information of dimension for

its elements : theψ−1-image (respψ∗
−1

-image) of eachi-cell is an element ofXi (respXn−i).

2.3 Restriction to particular complexes/orders

In most cases the notion of abstract cell complex is too general to represent the support of
images. We deal with particular complexes (such as simplicial and polyhedral complexes). We
would like then to know how to characterize orders so thatψ or ψ∗ builds a suitable complex.
There are ways to characterizesimplicial orders (i.e. orders such that its abstract cell complex
is simplicial). It is not clear whether we can definepolyhedral orders, because the definition of
polyhedral complexes involve geometric constraints. In the sequel, we will be interested by a
wider kind of complexes. We will call themstrongly normalcomplexes2.

Strongly normal complex: A complexC is saidstrongly normalif for each celle ∈ C, the
set of cellse0, e1, ..., en, that belong tost(e), is finite and if the intersection of the combinatorial
closures of theei (i = 0, 1, . . . , n) is either empty or the combinatorial closure of a cell ofC.

We define similarly the notion ofstrongly normalorder, and will prove that the dual abstract
cell complex of such an order is a strongly normal one.

Strongly normal order: An order is saidstrongly normalif it is CF and if the intersection
of theβ-adherences of the elements of every subset ofX0 is either empty or equal to theβ-
adherence of an elementx ∈ X

Lemma 1 : A puren-complexC is strongly normal if for each celle ∈ C, theset ofn-cells,
which belong tost(e), is finite and if the intersection of their combinatorial closures is the
combinatorial closure of a cell ofC.

Theorem (strongly normal order and complex) : The dual abstract cell complex of an order
is a strongly normal complex.

Proof : The dual abstract cell complex C∗|X| of an order |X| is pure. The order is CF and then
the star of each cell of C∗|X| is finite. Moreover, let e be a cell of C∗|X|, ψ

∗−1
(e) ∈ X , |X|

1a puren-complex is an-complex whosek-cells,k < n, are faces of at least onen-cell
2unrestricted simplicial complexes and unrestricted polyhedral complexes are special cases of strongly normal

complexes



is strongly normal so ∃x′ ∈ X such that β(x′) =
⋂
{β(x0), x0 ∈ α(ψ∗

−1
(e)) ∩ X0}.

Considering C∗|X|, it means that ∃e′ = ψ∗(x′) such that cl(ψ∗(x′)) =
⋂
{cl(en), en ∈

ψ∗(X0) with e < en}. From Lemma 1, we can deduce that C∗|X| is strongly normal. �

2.4 Links between their topologies

The notions defined on orders and complexes are linked through the mappingψ.
We first describe those that allow to define a topology on an order and its associated com-
plexes. We consider an order|X| and its abstract cell complexC|X|. The image of theα-
adherenceof an elementx (resp. a subsetS) of X is thecombinatorial closureof ψ(x) (resp.
ψ(S)). The image of thestrict α-adherenceof an elementx (resp. a subsetS) of X is the
combinatorial frontierof ψ(x) (resp. ψ(S)). Theα-interior of a subsetS of |X| is the set :

?α(S) = α(S) = {x ∈ S/β(x) ⊆ S}. The image of theα-interior of a subsetS of |X| is the
set of cellsψ(x) ∈ ψ(S) whose star inC|X| belongs toψ(S). A subsetS of |X| is α-closed
if S = α(S), andα-openif S = ?α(S). The notions of open and closed subcomplex are the
ones usually used (cf [6]). With these definitions, adiscrete topology in the sense of Alexan-
droff3 may be defined on both orders and complexes. Equipped with this topology, orders and
complexes becomeAlexandroff spaces4. Moreover the image of anα-closed (resp.α-open)
subset of|X| is a closed (resp. open) subcomplex ofC|X|. The inverse is also true.ψ is hence
anhomeomorphismbetween|X| andC|X|.
We examine then an order|X| and its dual abstract cell complexC∗|X|. The image of theβ-
adherenceof an elementx (resp. a subsetS) of X is thecombinatorial closureof ψ∗(x) (resp.
ψ∗(S)). The image of thestrict β-adherenceof an elementx (resp. a subsetS) of X is the
combinatorial frontierof ψ∗(x) (resp.ψ∗(S)). The image of theβ-interior of a subsetS of |X|
is the combinatorial closure ofψ∗(S). Moreover the image of aβ-closed (resp.β-open) subset
of |X| is an open (resp. closed) subcomplex ofC∗|X|. ψ

∗ is not an homeomorphism between|X|
andC∗|X|.

In the sequel we callθ-pathon |X| the image byψ−1 or ψ∗
−1

of a path (defined by the border
relation) onC|X| or C∗|X|, i.e. a sequence of elements such that every couple of consecutive
elements is inα ∪ β.

3 Connectedness between image elements

We consider now the notions and properties that are linked with the connectedness of orders
and complexes. It may first be proved thatconnectednessandpath-connectednessare equiva-
lent on both orders and complexes. In the sequel we determine which elements of an order|X|
(resp. a complexC equipped with a strong weak lighting function) must be kept to grant a given
connectivity between theα-terminals of|X|(resp. itsn-cells ofC). We will call “inessential”

3A topology is said discrete in the sense of Alexandroff iff the intersection of every family of open sets (finite
or infinite) is an open set

4An Alexandroff space is aT0-separable space with a discrete topology in the sense of Alexandroff



elements of either|X| orK, those that are not needed to characterize the chosen connectedness
between the main elements. For each notion introduced in one of the models we give an inter-
pretation into the other. Finally we prove the equivalence between the definition of inessential
elements in the two models when the considered order and the associated puren-complex are
strongly normal.

3.1 Connectedness betweenα-terminals in an order

As said in introduction, the order approach consider the elements inX0, i.e. theα-terminals of
|X|, as the points of the image and the elements of theXi,i > 0, as the connections between
them. The images of theα-terminals inC|X| are the cells without faces, i.e. by construction of
C|X|, the0-cells, and their images inC∗|X| are the cells with an empty strict star, i.e. by con-
struction ofC∗|X|, then-cells wheren is the maximal dimension ofC∗|X|. Determining whether
an element of|X| is inessential or not consists in a local observation.
We are then interested in theα-closenessof each elementx of |X|, α•(x). Formally,α•(x) =
{y ∈ X/y ∈ α�(x), α�(x) ∩ β�(y) = ∅}, i.e. it is the set of elements of|X| that are linked to
x by a singleα-chain of length1. It may be proved that

α�(x) =
⋃

xi∈α•(x)

α(xi).

If we considerC|X| (resp.C∗|X|), the image ofα•(x) byψ is the smallest subsetS of cl(ψ(x))\{ψ(x)}
(resp. st(ψ∗(x))\{ψ∗(x)}) such thatcl(S) (resp. st(S)) is equal tocl(ψ(x))\{ψ(x)} (resp.
st(ψ∗(x))\{ψ∗(x)}). The elements whoseα-closeness contains one and only one element are
calledα-unipolar (we note that anα-terminal cannot beα-unipolar). These points are the sim-
plest inessential points in the order, ifx is α-unipolar then∃x′ ∈ α�(x), α�(x) = α(x′). The
other inessential points of the orders are calledk-α-free and areα-unipolar for the order ob-
tained after the recursive deletion of a sequence ofα-unipolar points (or0-α-free points) and
i-α-free points (i ∈ {1, . . . , k−1}). Their deletion do not disconnect any couple ofα-terminals
of their common adherences :

Lemma 1 : Let |X| be a CF-order, ifx ∈ |X| is α-free then there existsx′ ∈ α�(x) such that
α(x) ∩X0 = α(x′) ∩X0.

Proof : xk isk-α-free, xk αYk-unipolar in Yk ⊆ X with Yk∩X0 = X0, then ∃!x′k ∈ Yk, α•|Yk(x
k) =

{x′k}. That is to say that α•|X(xk) contains some i-α-free elements (i ∈ {0, . . . , k − 1})
and eventually x′k. It may be seen (with an appropriate recursion) that every strict α-
adherence of every i-α-free element belonging to α•|X(xk) is contained in α(x′k). The
α-adherence of xk in X can then be expressed as the union of the singletons containing
the i-α-free elements of α•|X(xk) and the α-adherence of x′k. It implies then α(xk)∩X0 =

α(x′k) ∩X0. �



The deletion of the images ofα-free elements inC|X| do not remove the shortest paths whose
elements have the smaller dimension between any two0-cells of their neighborhood. The sup-
pression of their images inC∗|X| do not delete the shortest paths whose elements have the higher
dimension between any twon-cells of their neighborhood.
Finally an element of|X| that is notα-free is calledα-link and the set consisting of all the
α-links of an order is called theα-kernelof this order.

3.2 Strong Weak Lighting Functions

The weak lighting functions introduced by Ayalaet al. are usually defined on a homogeneously
n-dimensional locally finite polyhedral complexK, but the formal definition is valid on a wider
range of complexes. These functions allow to “light” the cells required to define a chosen
connexity on the complex.
In the sequel we denote byO a subset ofn-cells ofK, by stn(e, O) the set ofn-cells inO
belonging tost(e).

We denote bysupp(O) the support ofO that is the set of cellse whose combinatorial
closure is equal to the intersection of the combinatorial closure of the elements ofstn(e, O).
We define on a complexK a Strong Weak Lighting Function(s.w.l.f.) that is a map, f :
P(celln(K))×K → {0, 1} with ∀O ∈ P(celln(K)) ande ∈ K :
1. if e ∈ O thenf(O, e) = 1;
2. if e /∈ supp(O) thenf(O, e) = 0;
3. f(O, e) ≤ f(celln(K), e);
4. f(O, e) = f(stn(e,O), e);

The first property of the s.w.l.f. specifies that all then-cells of an objet are lighted, the
second one expresses that cells that are not intersection of combinatorial closures of subsets
of O are not useful to connect it, the third one imposes that a cell lighted for an object is also
lighted for the whole image, and the fourth one induces that for a given object, the lighting of a
cell is a local property of the objet. Many s.w.l.f. may be constructed on a complex depending
on which connexity we want to associate to the complex. These functions are equal to0 on
inessential elements of the complex and to1 on the others.

3.3 Connectedness in strongly normal orders/complexes

We are going to prove that it is possible to build a fonction on a strongly normal order|X| that
will define a s.w.l.f. on its dual abstract cell complexC|X|. To do so, we first express some
useful lemma (their proofs will not be given because of the lack of space).

The first one indicates that the strong normality property is hereditary for some subcomplex
of a strongly normal complex.

Lemma 2 : Let C be a pure strongly normal complex, every subcomplex ofC built without
removing any cell belonging to the support of at least one set ofn-cells, is also pure and strongly
normal.



The next lemma means that if two different cells are faces of exactly the samen-cells and if
one of them has a lower dimension then this latter cell is inessential.

Lemma 3 : LetX be a CF-order andC|X| its dual abstract cell complex, ifx andx′ are such
thatα(x) ∩X0 = α(x′) ∩X0 = S0 andx′ ∈ α�(x) thenψ∗(x) 6∈ supp(S0)

The following lemma is a corollary of Lemma3 , it shows that the images of theα-unipolar
elements of|X| in C∗|X| are inessential.

Lemma 4 : LetX be a CF-order andC|X| its dual abstract cell complex, ifx isα-unipolar then
ψ∗(x) 6∈ supp(ψ∗(α(x) ∩X0))

The next lemma concerns only the orders, it says that an element linked to only oneα-
terminal isα-free and hence inessential in the order.

Lemma 5 : Let |X| be a CF-order,∀x ∈ X, such thatx 6∈ X0 andα(x) ∩ X0 only contains
one element, thenx is α-free in|X|.

The following lemma shows that every inessential cell linked to more than onen-cell is face
of an element of the support of this group ofn-cells.

Lemma 6 : Let |X| be a strongly normal order,∀S0 ⊆ X0, every cell ofC∗|X| that does not
belong tosupp(ψ∗(S0)) and whose star contains at least twon-cells ofψ∗(S0) is face of at least
onek-cell, k < n, of supp(ψ∗(S0)).

The next lemma indicates that an inessential cell may be the maximal face of at most one
cell of the support of an objectO.

Lemma 7 : Let |X| be a strongly normal order,∀S0 ⊆ X0, a cell e of C∗|X| such thate 6∈
supp(ψ∗(S0)) cannot be the maximal face of more than one celle′ ∈ supp(S0) (that ise < e′

and 6 ∃e′′ ∈ ψ∗(β(S0)) such thate < e′′ < e′).

The last lemma shows that the cells not belonging to the support of an object and whose
dimension are maximal are some of the first inessential cells that can be removed (it may be
proved thanks to Lemma7).

Lemma 8 : Let |X| be a strongly normal order,∀S0 ⊆ X0, a cell e of C∗|X| such thate 6∈
supp(ψ∗(S0)) and whose dimension is maximal is a maximal face of one cell ofsupp(ψ∗(S0)).
Moreover its image byψ∗

−1
is α|β(S0)-unipolar.

We are now going to prove our main result that is theα-kernel of any suborder of a strongly
normal order|X| is transformed byψ∗ into the support of the correspondingn-cells inC∗|X|.

Theorem (α-kernel and support) : Let |X| = (X,α) be a strongly normal order andC∗|X| its
dual abstract complex.∀S0 ⊆ X0 :



x α-free in the order|β(S0)| = (β(S0), α|S0)⇔ ψ(x) 6∈ supp(ψ∗(S0)).

Proof : We are going to prove the theorem in two stages :
⇒ If x is α|β(S0)-free in |β(S0)|, we prove that its image by ψ∗ does not belong to
supp(ψ∗(S0)), indeed :
• if x is α|β(S0)-unipolar, then, by Lemma 4, ψ∗(x) 6∈ supp(ψ∗(S0));
• if x is α|β(S0)-free, then, by Lemma 1, ∃x′ ∈ α�(x) such that α(x) ∩ S0 = α(x′) ∩ S0

and by Lemma 3 ψ∗(x) 6∈ supp(ψ∗(S0)).
⇐ Let e ∈ cl(ψ∗(S0)), with e 6∈ supp(ψ∗(S0)), and dim(e) < n, we show that ψ∗−1

(e)
is α|β(S0)-free
1. if e is face of only one n-cell, en, e 6∈ supp(ψ∗(S0)) because the intersection of the
combinatorial closure of all n-cells having e as face is reduced to cl(en) which is different
from cl(e). Moreover α(ψ∗

−1
(e)) ∩ S0 contains only one element : ψ∗−1

(en). ψ∗−1
(e) is

hence α|β(S0)-free, by Lemma 5.
2. if e is face of at least two n-cells of ψ∗(S0), we know by Lemma 6 that ∃ep ∈
supp(ψ∗(S0)) such that e < ep.
2-a. If e has a maximal dimension, we know by Lemma 8 that ψ∗−1

(e) is α|β(S0)-unipolar.
2-b. We consider then the subcomplex C1 of ψ∗(β(S0)) obtained from ψ∗(β(S0)) by re-
moving all cells considered in 1. and 2-a.. By Lemma 2, we know that C1 is pure and
strongly normal. We consider the cells of C1 not belonging to supp(ψ∗(S0)) and having
a maximal dimension. Lemma 8 allows us to conclude as previously that these cells are
α|ψ∗−1

(X1)-unipolar for the order |ψ∗−1
(X1)| deduced from β(S0) by removing only α-

unipolar and α-free elements. These cells are hence α|β(S0)-free. Finally, by recursively
deleting cells of maximal dimension not belonging to supp(ψ∗(S0)), we remove all cells
not belonging to supp(ψ∗(S0)). As each of them is a cell of maximal dimension for a
strongly normal subcomplex of ψ∗(β(S0)), it is α-unipolar for a suborder of β(S0) ob-
tained by removing only α|β(S0)-unipolar and α|β(S0)-free elements of β(S0). Hence each
of these cells is α|β(S0)-free. �

We now define ananalogous of s.w.l.f. for strongly normal orders. Let |X| be a strongly
normal order, a s.w.l.f.φ on |X| is defined by :φ : P(X0)×X → {0, 1}
φ(S0, x) = 1 if x ∈ X0,
φ(S0, x) = 0 if x 6∈ α-kernel(β(S0)),
φ(S0, x) ≤ φ(X0, x);
φ(S0, x) = φ(α(x) ∩ S0, x);

Theorem (Order and complex with s.w.l.f.) : Let |X| be a strongly normal order, the mapf
defined by :∀x ∈ X∀S0 ⊆ X0, f(ψ(S0), ψ(x)) = φ(S0, x) is a s.w.l.f. onC∗|X|.

Proof : Properties 1,3 and 4 of s.w.l.f. clearly hold for f . Property 2 is a consequence of
theorem 1 �



4 Conclusion and Perspectives

We have shown that a strongly normal order and a pure strongly normal complex can be built
from one another, in such a way that the inessential elements of one match the inessential ones of
the other. Both models are interesting because they are general and in particular not dimension
dependent.They propose a general framework to represent the support of images and to express
topology relations within. Nevertheless they are not equivalent and we list briefly the benefits
that each model may take of the other. Concerning the notion of connectedness, Bertrand and al.
had to consider different orders to define different connectedness, whereas the use of a s.w.l.f.
allows to define several connectedness on the same order. Moreover the polyhedral complex
used by Ayalaet al. is the basis of a multilevel architecture that allow to have discrete results
consistent with continuous ones. They propose for example the definition of a fundamental
group that may be transferred on orders. They also prove a Seifert-Van Kampen theorem to
compute fundamental groups. Ayalaet al. have in interesting theoretical results but their work
has not been exploited yet in concrete applications. Bertrandet al. have more practical results
and propose for example a definition of simple points which allows the thinning of objects in
parallel. It may be interesting to see how their method may be applied to complexes.
In future works we intend to effectively transfer the tools of one model onto the other. We are
also studying if the notions of surface defined on orders and checking if it is consistent with the
surface classically defined with polyhedral complexes.
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