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Abstract

In order to define consistent models and algorithms for image analysis, many topolog-
ical representations of images have been proposed. Unfortunately the most generic ones
are often not explicitly related, and properties exhibited on one representation are unknown
for other representations. The aim of this paper is to show how two different topological
representations of images, namely thder representation (developped by Bertraidl.)
and thecomplex representation using strong weak lighting func(stusiied by Ayalaet
al.) may be related in such a way that the results and algorithms proved on one may be
applied to the other and conversely.

1 Introduction

The study of the topological properties of discrete spaces is an active field of research. Different
approaches have been proposed to represent the support of the images and describe the links
between their elements (e.g. pixels in 2D, voxels in 3D). Most of their results and algorithms
seem to be model dependent. Nevertheless there are often bridges between these approaches
which once discovered could allow the transfer of theoretical results and practical algorithms
from one to another. This paper takes an interest in two of these approaches and aims to explicit
their relationship. The first one is a work conducted by Bertrandl. [1, 2] and use the

order representationFrom this point of view the elements of the image are represented by the
“smallest” elements relative to the order whereas the other elements define the links between
them. The second one is based on the approach of MAta#d. [3, 4, 5] which considers

the support of an image asfimite polyhedral complexquipped with a particular function
calledstrong weak lighting functianin this case the elements of the image are represented by

the cells of maximal dimension and the cells of lesser dimension connect them. Both models
propose formal ways to define several connectednesses between the elements of the image,
that is several methods to select only the links of interest (for a given purpose) between the



elements of the image. These two approaches are compliant with classical connectednesses
(for example those introduced by Rosenfeld) and also create new ones. Our contribution is to
show that, one can construct complexes from orders and orders from complexes in such a way
that the results found by Bertrarad al. and by Ayalaet al. hold for both models. We first
present the main characteristics of both orders and abstract cell complexes and the ways to go
from one to the other. We then explicit the relations between their topologies and finally show
the correspondence between the construction of connectedness on orders and on complexes
equipped with a strong weak lighting function. We will finally list briefly the advantages each
model may take of the other.

2 Order and Complexes

2.1 Definitions

This section presents some definitions related to orders and complexes and introduces mappings
for building complexes from orders and orders from complexes. For the orders we follow the
notations defined by Bertrared al. in [1, 2].

An orderis a pair| X| = (X, «a), whereX is a set andv a reflexive, antisymetric, and
transitive binary relation. In the sequel we denétie inverse ofr andd the union ofa andg.
Moreover we only consider a restricted family of orders, callddorders that arecountable
i.e. X is countable, antbcally finite i.e.Vx € X, 6(z) is finite.

Some particular sets can be associated to each elem@nk’. The simplest ones are its
a-adherencea(z) = {y € X;(z,y) € o} and itsstrict a-adherencga™(z) = a(z)\{z}. We
also calla-chainevery fully a-ordered subset gfX |. If | X| is CF, everya-chain is finite and
its length is equal to the number of its elements less one. If we only consider a Subisat
we denoteyg the reflexive, antisymetric, and transitive binary relation S x S.

An abstract cell complex’ = (E, <,dim) is a setE of abstract elements associated with
an irreflexive, antisymetric, and transitive binary relationC £ x E calledborder (or face)
relationand a mappingimensiordim : £ — I C Z* such that/(e,¢’) € E x E, withe’ < e,
dim(e') < dim(e).

In the sequel, thetar of a celle of C' will be denotedst(e) and itscombinatorial closure
cl(e).

2.2 Associated orders and complexes

It may be easily seen that there exists-a 1 mappingf that builds an ordefX¢| = (X¢, ac)

from an abstract cell compleX = (E, <, dim) such thatVe € E, 3!f(e) € Xc and¥(e, €') €

E x Ewithe < ¢ ore = ¢, (f(e), f(¢/)) € ac. This transformation loses, in general,

the notion of dimension. Proving the existence of a mapping that constructs an abstract cell
complex from an order and effectively building one is less trivial since orders have no notion
of dimension. We first restrain our study to CF-orders since non countable orders cannot be
mapped onto a complex. The intuition is to partitidnin a finite number of subsets and to
attribute to each element a number according to the unique subset it belongs to.



As the order is locally finite, there exists a sub&gtof X, whose elements have an empty
strict a-adherence. Moreover all other elementsXofire linked by at least one-chain to an
element ofX, and thea-chains between an element &f, and another element of have a
finite length. There exists then an intedgesuch that the length of every-chain on| X | is less
than or equal t&. Moreover for eaclr € X there exists an integér< k such that is the
maximal length of all thex-chains beginning at and ending at an element &f,. X may then
be partitionned inX;, i = 0..k such thatr € X; if the maximal length of thex-chains from
Xy to z is 7. This partition of X is calleda-decompositiorof | X| and is indeed the family
F ={Xo, X1, ..., Xx} such that :

_Xo={z e X, o(z) =0}, o
Vie{l,.. kL Xi={r €S S=X\UL " X;,al(x) =0},
Xy # 0andX = U X,

For eachr € X, there exists thene [0..K] such that: € X;. Letz, andzx, be respectively
elements ofX; and X; such thatr, € aD(xa) then we deduce from the construction of the
partition that; > j. This means that an element |0f | “less” than another according tois
associated to a lesser integer number. We call therefore this number the dimensiandf
denote itdim,(x). The dimension of each element|of | may be recursively computed.

Property 1: Letz be an element gfX|,
_dimg(z) = 0iff aB(z) =0
_dimg(z) = 1+ max™, (dimea(y;)) with oP(z) = {y;,i € [1..m]}

We deduce from this how to construct a function that builds an abstract cellar complex from
a CF-order.

Theorem (Order and abstract cell complex) : Theabstract cell complex' = (E, <, dim),
associated with the CF-ordeX | = (X, «), is defined by the map such that :

_Vzr e X,dY(x) € E (v 1-1 mapping fromX to £),

_V(x,2') € X x X suchthat’ € o"(z), ¥(2') < ¢(x)

Ve X, dim(¢(z)) = dimy(x)

In such a complex, the faces of a celire precisely the images hyof the elements of the
strict a-adherence ofy~!(e). In the sequel we will be interested in another complex that may
be built from a CF-order. We call it thdual abstract cell compleaf the order.

Theorem (Order and dual abstract cell complex) : Thedual abstract cell complegx™ =
(E*, <*, dim*), associated with the CF-ordeX | = (X, «), is defined by the map* such that
_Vzr e X,dW*(x) € E* (v* 1-1 mapping fromX to E*),

_V(x,2') € X x X such that’ € 85(x), ¥*(2') <* ¢*(x) (* isomorphism from X, 3) to
(B, <),

_Vz e X, dim(y*(z)) = dim?’ (z) with dim}, = mazx,ex{dim,(x)} — dim,.

The dual abstract cell complex of an ordéf, «) is generallynot the sames the abstract
cell complex of the dual ordgrX, 3). The dimensionlim}, is indeed different fromilimg in



most cases. We prefer using the dual abstract cell complex of an order because it is, by con-
struction, goure' complex. In such a complex, the faces of a ealkre precisely the images by
¥* of the elements of the strictadherence of* ' (e).

Finally, with an informal notation, we remark thatecomplexC' such that)(¢y=1(C)) = C
(resp.y*(¢* (C)) = C) must have the following property : eveycell of C' (i € [0..n]) has
at least &-face for eactk € [0,7 — 1] (resp. is face of &-cell, k € [i + 1, n]). The order built
with ¢)~! (resp.¢* ') from such a complex keeps implicitly the information of dimension for
its elements : the)~'-image (resp)* '-image) of eacti-cell is an element oX; (respX,,_.).

2.3 Restriction to particular complexes/orders

In most cases the notion of abstract cell complex is too general to represent the support of
images. We deal with particular complexes (such as simplicial and polyhedral complexes). We
would like then to know how to characterize orders so that «* builds a suitable complex.
There are ways to characterigenplicial orders (i.e. orders such that its abstract cell complex
is simplicial). It is not clear whether we can defipaelyhedral ordersbecause the definition of
polyhedral complexes involve geometric constraints. In the sequel, we will be interested by a
wider kind of complexes. We will call theistrongly normakomplexes.

Strongly normal complexA complexC' is saidstrongly normaif for each celle € C, the
set of cellsy, e, ..., e, that belong tat(e), is finite and if the intersection of the combinatorial
closures of the; (: = 0,1, ..., n) is either empty or the combinatorial closure of a cel(of

We define similarly the notion aftrongly normabrder, and will prove that the dual abstract
cell complex of such an order is a strongly normal one.

Strongly normal order An order is saidstrongly normalif it is CF and if the intersection
of the g-adherences of the elements of every subseXpfs either empty or equal to the-
adherence of an elementc X

Lemma 1: A puren-complexC is strongly normal if for each cell € C, theset ofn-cells
which belong tost(e), is finite and if the intersection of their combinatorial closures is the
combinatorial closure of a cell @f.

Theorem (strongly normal order and complex) : The dual abstract cell complex of an order
is a strongly normal complex.

Proof : The dual abstract cell complex C|*X| of an order | X | is pure. The order is CF and then
the star of each cell of C’|*X‘ is finite. Moreover, let e be a cell of C’|*X‘, 1/)*71 (e) € X, | X]

La puren-complex is an-complex whosé-cells,k < n, are faces of at least omecell
2unrestricted simplicial complexes and unrestricted polyhedral complexes are special cases of strongly normal
complexes



is strongly normal so 3z’ € X such that 3(z') = N{B(x0), zo € a(¥*  (e)) N Xy}
Considering Cfy,, it means that 3¢’ = ¢*(z') such that cl(¢y"(2')) = ({cl(es), en €
¥*(Xo) withe < e,}. From Lemma 1, we can deduce that C}'y, is strongly normal. U

2.4 Links between their topologies

The notions defined on orders and complexes are linked through the majpping

We first describe those that allow to define a topology on an order and its associated com-
plexes. We consider an ordgk| and its abstract cell compleX|x|. The image of thex-
adherenceof an element: (resp. a subsef) of X is thecombinatorial closureof ¢ (x) (resp.

¥(S)). The image of thestrict «-adherenceof an element: (resp. a subsef) of X is the
combinatorial frontierof ¢ (z) (resp. ¢(S)). The a-interior of a subsef of | X]| is the set :

*a(S) = a(S) = {z € §/F(x) C S}. The image of thev-interior of a subset of | X| is the

set of cellsy(z) € ¢(S) whose star irC|x| belongs toy(S). A subsetS of | X| is a-closed

if S = «a(S), anda-openif S = x«(S). The notions of open and closed subcomplex are the
ones usually used (cB]). With these definitions, discrete topology in the sense of Alexan-
droff® may be defined on both orders and complexes. Equipped with this topology, orders and
complexes becomAlexandroff space$ Moreover the image of an-closed (resp.c-open)
subset of X | is a closed (resp. open) subcomplex(t|. The inverse is also trues is hence
anhomeomorphisrbetween X'| andCx;.

We examine then an ordeK| and its dual abstract cell compl€Xy,. The image of thes-
adherencef an element: (resp. a subsef) of X is thecombinatorial closuref *(z) (resp.
¥*(95)). The image of thestrict 3-adherenceof an element: (resp. a subset) of X is the
combinatorial frontierof *(x) (resp.y*(.S)). The image of the-interior of a subse$ of | X|

is the combinatorial closure af*(S). Moreover the image of &-closed (respg-open) subset

of | X|is an open (resp. closed) subcomplex®t,. ¢ is not an homeomorphism betwegx|
andC'y,.

In the sequel we call-pathon | X| the image by~ or ¢* ' of a path (defined by the border
relation) onC/x, or C“‘Xl, i.e. a sequence of elements such that every couple of consecutive
elementsis iy U 3.

3 Connectedness between image elements

We consider now the notions and properties that are linked with the connectedness of orders
and complexes. It may first be proved tltahnectednesandpath-connectednesse equiva-

lent on both orders and complexes. In the sequel we determine which elements of giXérder
(resp. a complex’ equipped with a strong weak lighting function) must be kept to grant a given
connectivity between the-terminals of| X |(resp. itsn-cells of C'). We will call “inessential”

3A topology is said discrete in the sense of Alexandroff iff the intersection of every family of open sets (finite
or infinite) is an open set
4An Alexandroff space is d,-separable space with a discrete topology in the sense of Alexandroff



elements of eithellX | or K, those that are not needed to characterize the chosen connectedness
between the main elements. For each notion introduced in one of the models we give an inter-
pretation into the other. Finally we prove the equivalence between the definition of inessential
elements in the two models when the considered order and the associatedqumglex are
strongly normal

3.1 Connectedness betweemnterminals in an order

As said in introduction, the order approach consider the elemeris,ine. thea-terminals of

| X, as the points of the image and the elements ofXhé > 0, as the connections between
them. The images of the-terminals inC| x| are the cells without faces, i.e. by construction of
Cx|, the(-cells, and their images i67y, are the cells with an empty strict star, i.e. by con-
struction ofC|y |, then-cells wheren is the maximal dimension affy,. Determining whether
an element of X| is inessential or not consists in a local observation.

We are then interested in theclosenessf each element of | X|, a*(x). Formally,a®(z) =

{y € X/y € a"(x),a (x) N B (y) = 0}, i.e. itis the set of elements oK | that are linked to

x by a singlen-chain of lengthl. It may be proved that

oB(z) = U alx;).

zi€a®(x)

If we considelC x| (resp.C/)), the image of* (x) by ¢/ is the smallest subsgtof cl(¢(z))\{(z)}
(resp. st(*(x))\{v*(x)}) such thatcl(S) (resp. st(S)) is equal tocl((x))\{(x)} (resp.
st(v*(x))\{v*(z)}). The elements whose-closeness contains one and only one element are
calleda-unipolar (we note that am-terminal cannot be-unipolar). These points are the sim-
plest inessential points in the orderyifis a-unipolar therdz’ € o”(z),aP(x) = a(2’). The
other inessential points of the orders are called-free and area-unipolar for the order ob-
tained after the recursive deletion of a sequence-ahipolar points (of-a-free points) and
i-a-free points{ € {1,...,k—1}). Their deletion do not disconnect any couplexaerminals

of their common adherences :

Lemmal: Let|X|be a CF-order, if: € |X|is a-free then there exists € a(x) such that
alz) N Xy = a(z’) N X.

Proof : 2" isk-a-free, ¥ ay, -unipolarinY), C X withY;NX, = X, then 2% € Y}, arYk(wk) =
{«'*}. That is to say that afy («*) contains some i-o-free elements (i € {0,...,k —1})
and eventually x'*. It may be seen (with an appropriate recursion) that every strict c-
adherence of every i-a-free element belonging to arX(xk) is contained in a(x'%). The
a-adherence of x* in X can then be expressed as the union of the singletons containing
the i--free elements of y (2*) and the -adherence of z'*. It implies then o(z*) N X =

a(z’®) N X,. O



The deletion of the images of-free elements i’ x| do not remove the shortest paths whose
elements have the smaller dimension between anytaglls of their neighborhood. The sup-
pression of their images kﬁ’f}Q do not delete the shortest paths whose elements have the higher
dimension between any twe-cells of their neighborhood.

Finally an element ofX| that is nota-free is calleda-link and the set consisting of all the
a-links of an order is called the-kernelof this order.

3.2 Strong Weak Lighting Functions

The weak lighting functions introduced by Ayadaal. are usually defined on a homogeneously
n-dimensional locally finite polyhedral compléx, but the formal definition is valid on a wider
range of complexes. These functions allow to “light” the cells required to define a chosen
connexity on the complex.

In the sequel we denote ly a subset of.-cells of K, by st, (e, O) the set ofn-cells in O
belonging tost(e).

We denote bysupp(O) the support ofO that is the set of cells whose combinatorial
closure is equal to the intersection of the combinatorial closure of the elemesnts(efO).
We define on a compleX” a Strong Weak Lighting Functio(s.w.l.f.) that is a map, f :
P(cell,(K)) x K — {0,1} with VO € P(cell,(K)) ande € K :
1.ife e Othenf(O,e) =1,

2. if e ¢ supp(O) thenf(O,e) = 0;
3. f(O,e) < f(cell(K),e);
4. f<O7 6) = f(Stn<€7 0)7 e);

The first property of the s.w.L.f. specifies that all thecells of an objet are lighted, the
second one expresses that cells that are not intersection of combinatorial closures of subsets
of O are not useful to connect it, the third one imposes that a cell lighted for an object is also
lighted for the whole image, and the fourth one induces that for a given object, the lighting of a
cell is a local property of the objet. Many s.w.l.f. may be constructed on a complex depending
on which connexity we want to associate to the complex. These functions are equahto
inessential elements of the complex and tn the others.

3.3 Connectedness in strongly normal orders/complexes

We are going to prove that it is possible to build a fonction on a strongly normal pXdehat
will define a s.w.L.f. on its dual abstract cell compl€;|. To do so, we first express some
useful lemma (their proofs will not be given because of the lack of space).

The first one indicates that the strong normality property is hereditary for some subcomplex
of a strongly normal complex.

Lemma 2 : Let C' be a pure strongly normal complex, every subcompleg’ dduilt without
removing any cell belonging to the support of at least one seta#ls, is also pure and strongly
normal.



The next lemma means that if two different cells are faces of exactly thesamis and if
one of them has a lower dimension then this latter cell is inessential.

Lemma 3 : Let X be a CF-order and|x its dual abstract cell complex, if andz" are such
thata(z) N X, = a(z’) N Xy = Sy anda’ € aP(x) theny* (z) & supp(So)

The following lemma is a corollary of Lemn&, it shows that the images of tleunipolar
elements of X | in Cy, are inessential.

Lemma4 : Let X be a CF-order and x| its dual abstract cell complex,fis a-unipolar then

V™ (x) & supp(¢™(a(x) N Xo))

The next lemma concerns only the orders, it says that an element linked to onty- one
terminal isa-free and hence inessential in the order.

Lemma5: Let|X| be a CF-orderyxz € X, such thatr ¢ X, anda(z) N X, only contains
one element, then is a-free in| X|.

The following lemma shows that every inessential cell linked to more than-aad is face
of an element of the support of this groupretells.

Lemma 6 : Let|X| be a strongly normal ordey,S, C X, every cell ofCI*X| that does not
belong tosupp(¢*(Sy)) and whose star contains at least twaells of*(.Sy) is face of at least
onek-cell, & < n, of supp(*(S0)).

The next lemma indicates that an inessential cell may be the maximal face of at most one
cell of the support of an objec?.

Lemma 7 : Let|X]| be a strongly normal orde¥,S, C X, a celle of C[‘jx‘ such thate ¢
supp(1*(Sp)) cannot be the maximal face of more than one €elt supp(S,) (thatise < ¢’
and Ae” € 1*(5(Sy)) such that < e’ < ¢).

The last lemma shows that the cells not belonging to the support of an object and whose
dimension are maximal are some of the first inessential cells that can be removed (it may be
proved thanks to Lemm3).

Lemma 8 : Let|X]| be a strongly normal orde¥,S, C X, a celle of C[‘jx‘ such thate ¢
supp(¥*(Sp)) and whose dimension is maximal is a maximal face of one cellipf(y*(.S))).
Moreover its image by is as(s,)-unipolar.

We are now going to prove our main result that is dhkernel of any suborder of a strongly
normal ordef X | is transformed by)* into the support of the correspondingcells inCy.

Theorem (a-kernel and support) : Let | X| = (X, «) be a strongly normal order a\@kX| its
dual abstract complex.S, C X :



z a-free in the ordet3(Sy)| = (B(So), ais,) < ¥ @) & supp(v*(Sy)).

Proof : We are going to prove the theorem in two stages :
= If x is oyp(s,)-free in |3(Sy)|, we prove that its image by 1)* does not belong to
supp(¥*(Sy)), indeed :
e if x is ayp(s,)-unipolar, then, by Lemma 4, " (x) & supp(1*(So));
o if x is cvp(s,)-free, then, by Lemma 1, 32" € () such that a(z) N Sy = az’) N Sy
and by Lemma 3 ¢*(x) & supp(y*(Sp))-
< Lete € cl(1*(Sy)), with e & supp(1*(S,)), and dim(e) < n, we show that 1* ' (e)
1S vy g(s,) -free
1. if e is face of only one n-cell, e,, e & supp(1*(Sy)) because the intersection of the
combinatorial closure of all n-cells having e as face is reduced to cl(e,,) which is different
from cl(e). Moreover a(1* " (€)) N Sy contains only one element : V* (e,). 1* ' (e) is
hence «p(s,)-free, by Lemma 5.
2. if e is face of at least two n-cells of 1*(Sy), we know by Lemma 6 that e, €
supp(1*(Sp)) such thate < e,.
2-a. If e has a maximal dimension, we know by Lemma 8 that * " (e) is | 3(s,) -unipolar.
2-b. We consider then the subcomplex C* of 1*(3(Sy)) obtained from 1*(3(Sy)) by re-
moving all cells considered in 1. and 2-a.. By Lemma 2, we know that C" is pure and
strongly normal. We consider the cells of C* not belonging to supp(1*(Sy)) and having
a maximal dimension. Lemma 8 allows us to conclude as previously that these cells are
OV «=1 1y -unipolar for the order l* " (X)| deduced from (3(Sy) by removing only -
unipolar and «o-free elements. These cells are hence o g(s,)-free. Finally, by recursively
deleting cells of maximal dimension not belonging to supp(1*(Sy)), we remove all cells
not belonging to supp(1*(Sy)). As each of them is a cell of maximal dimension for a
strongly normal subcomplex of 1)*(3(Sy)), it is a-unipolar for a suborder of 3(.S;) ob-
tained by removing only «g(s,)-unipolar and o z(s,)-free elements of 3(.Sy). Hence each
of these cells is (s, -free. O

We now define aranalogous of s.w.l.f. for strongly normal orderket | X | be a strongly
normal order, a s.w.l.fp on | X| is defined by i : P(X,) x X — {0,1}
—(b(SO, )— 1ifz S X(),
~ (8o, x) = 0if x & a-kernel3(Sy)),
- 9(So, ) < ¢(Xo,x);
- 9(So, ) = p(a(x) N So, x);

Theorem (Order and complex with s.w..f.) : Let|X| be a strongly normal order, the mgp
defined by vz € XVS, C Xo, f(¢(5), ¥(2)) = (50, z) is as.w.l.f. onCly,.

Proof : Properties 1,3 and 4 of s.w.l.f. clearly hold for f. Property 2 is a consequence of
theorem 1 ]



4 Conclusion and Perspectives

We have shown that a strongly normal order and a pure strongly normal complex can be built
from one another, in such a way that the inessential elements of one match the inessential ones of
the other. Both models are interesting because they are general and in particular not dimension
dependent.They propose a general framework to represent the support of images and to express
topology relations within. Nevertheless they are not equivalent and we list briefly the benefits
that each model may take of the other. Concerning the notion of connectedness, Bertrand and al.
had to consider different orders to define different connectedness, whereas the use of a s.w.|.f.
allows to define several connectedness on the same order. Moreover the polyhedral complex
used by Ayaleet al. is the basis of a multilevel architecture that allow to have discrete results
consistent with continuous ones. They propose for example the definition of a fundamental
group that may be transferred on orders. They also prove a Seifert-Van Kampen theorem to
compute fundamental groups. Ayatal. have in interesting theoretical results but their work

has not been exploited yet in concrete applications. Bertehadl have more practical results

and propose for example a definition of simple points which allows the thinning of objects in
parallel. It may be interesting to see how their method may be applied to complexes.

In future works we intend to effectively transfer the tools of one model onto the other. We are
also studying if the notions of surface defined on orders and checking if it is consistent with the
surface classically defined with polyhedral complexes.
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