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Abstract—Decoupling local geometric features from the spatial location of a mesh is crucial for feature-preserving mesh denoising.

This paper focuses on first order features, i.e., facet normals, and presents a simple yet effective anisotropic mesh denoising

framework via normal field denoising. Unlike previous denoising methods based on normal filtering, which process normals defined on

the Gauss sphere, our method considers normals as a surface signal defined over the original mesh. This allows the design of a novel

bilateral normal filter that depends on both spatial distance and signal distance. Our bilateral filter is a more natural extension of the

elegant bilateral filter for image denoising than those used in previous bilateral mesh denoising methods. Besides applying this bilateral

normal filter in a local, iterative scheme, as common in most of previous works, we present for the first time a global, noniterative

scheme for an isotropic denoising. We show that the former scheme is faster and more effective for denoising extremely noisy meshes

while the latter scheme is more robust to irregular surface sampling. We demonstrate that both our feature-preserving schemes

generally produce visually and numerically better denoising results than previous methods, especially at challenging regions with sharp

features or irregular sampling.

Index Terms—Mesh denoising, bilateral normal filtering, feature preserving, irregular surface sampling.

Ç

1 INTRODUCTION

MESH denoising is a vital preprocessing tool for improv-
ing imperfect meshes obtained from scanning devices

and digitization processes. Although there already exist a
variety of mesh denoising methods, research on feature-
preserving denoising remains active due to its challenging
nature. On the one hand, local geometric features, either
low-frequency or high-frequency, should be retained or
even recovered during the denoising process. On the other
hand, the features, especially those of high-frequency such
as sharp edges and corners, are hard to distinguish from
noises, which themselves are also often of high-frequency.
Generally, feature-preserving denoising is achieved by
locally adjusting vertex positions while respecting the
underlying features. Anisotropic treatment is often needed
to preserve features such as sharp edges and corners.

To preserve local geometric features during denoising,
the features must first be identified, either implicitly or
explicitly, and decoupled from the spatial location of a
mesh defined in a global coordinate system. Although high-
order differential properties, such as the shape operator,
might contain desirable anisotropic information of features,
they are not well defined at regions with sharp features and
their computation might become not robust in the presence
of noise. Therefore, many existing techniques rely on only
first order features, i.e., facet normals. The key idea is to first
denoise the normal field and then evolve the surface to
match the denoised normals. Unlike high-order differential

properties, facet normals are usually well defined anywhere
on a surface, especially for triangular meshes. However,
previous methods [2], [5], [6], [7] simply work on the
normals defined on the Gauss sphere, completely ignoring
the parametrization information of the input mesh.

We show that such parametrization is crucial for
effective denoising of the normal field especially when the
input meshes have highly irregular sampling. Thus we
consider the facet normals as a surface signal defined over
the original mesh instead of over the Gauss sphere. A new
bilateral filter is designed to average the neighboring
normals in an anisotropic manner. The averaging weight
is determined by two main factors. One measures the signal
difference, i.e., normal difference, and the other measures
the spatial distance between the neighboring facets where
normals are compared. Our carefully designed bilateral
weighting guarantees that there is little interinfluence
between normals which lie across sharp features or are far
away, thus enabling feature-preserving denoising. We also
take facet sizes into account in weight design, making our
bilateral filter more robust to irregular surface sampling.

Due to the different levels of noise, locally applying a
single step of our bilateral filter to the normal field often
does not lead to satisfactory denoising results. Like most
previous mesh denoising methods, we design a local,
iterative scheme and allow users to control the degree of
denoising by adjusting the number of iterations needed. At
each iteration, similar to traditional convolution filters, our
bilateral normal filter is independently applied to indivi-
dual normals to obtain a new normal field as input to the
next iteration.

Apart from our local, iterative scheme, we also investi-
gate a global, noniterative denoising scheme. Unlike previous
global smoothing techniques [8], [9], [10], which are all
isotropic, to the best of our knowledge, ours is the first
global denoising scheme which is anisotropic and thus able
to preserve sharp features. The bilateral updating is
formulated as a global optimization system which consists
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of two energy terms, a smoothness term and a data term.
The user adjusts a parameter for balancing between these
two energy terms to control the degree of denoising.
Solving this optimization gives a denoised normal field.

We apply our denoising schemes to a variety of meshes
corrupted by significant noise, which is either synthetic or
arises from imperfect measurement of scanning devices. We
demonstrate that our schemes are able to faithfully retain
geometric details and recover features corrupted by the
noise. We show that our two schemes have their own
advantages and disadvantages. The local, iterative scheme is
generally faster and more effective for recovering the
underlying surface from extremely noisy input meshes.
The global, iterative scheme is more robust to irregular
surface sampling. We also compare our schemes with the
state-of-the-art denoising techniques, demonstrating that
both of them consistently produce better results at challen-
ging regions, e.g., flat regions near sharp edges/corners or
regions with highly irregular sampling (see comparison
examples in Figs. 1 and 2).

In summary, the main contributions of this paper are

. A bilateral filter to process a normal field defined
over an input mesh. The filter is insensitive to
surface sampling and can be easily extended to filter
other types of vector fields defined over a manifold.

. Two practical anisotropic mesh denoising schemes
which are efficient, robust, feature-preserving, and
simple to implement.

2 RELATED WORK

Our review here focuses only on existing works that are
most related to ours. Particularly, we are interested more in

anisotropic mesh denoising than isotropic denoising. Please
refer to an insightful survey by Botsch et al. [11] on the
general mesh smoothing/denoising problem.

Many mesh denoising methods have been extended
from image denoising methods. For example, diffusion-
based methods [12], [13], [14], [15] extend feature-preser-
ving anisotropic diffusion in image processing to aniso-
tropic geometric diffusion on surfaces. The diffusion
process is mainly governed by the principle of heat transfer,
expressed by a discretized PDE. Diffusion-based methods
preserve or even sharpen geometric features during
denoising by introducing anisotropic heat tensors [13],
[14], [16], [17], [18]. Such approaches usually require the
computation of energy gradients and Hessians, which
typically involve complex implementation and are compu-
tationally expensive. An interesting fact is that when the
diffusion tensor is locally constant, the diffusion process can
be reduced to the mean curvature flow on the surface [4],
[19], thus greatly simplifying implementation complexity.
More specifically, a prescribed anisotropic mean curvature
flow is introduced in [4], which can be seen as an effective
discretization of Clarenz et al.’s anisotropic geometry
diffusion equation [13]. It is also worth mentioning that
there is a fundamental relationship between diffusion and
bilateral filtering [20].

Recently, Ouafdi et al. [3] proposed a probabilistic
smoothing method, which performs an anisotropic average
of neighboring vertices weighted by the Riemannian dis-
tance according to a well-designed diffusion tensor. Since its
computation is highly dependent on high-order differential
properties, i.e., the shape operator, this method often causes
denoising artifacts near regions with sharp features.
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Fig. 1. Our mesh denoising schemes based on bilateral normal filtering produce better results than the state-of-the-art methods at challenging
regions with sharp features or irregular surface sampling. From left to right: an input CAD-like model with random subdivision, denoising results with
bilateral mesh filtering (vertex-based) [1], unilateral normal filtering [2], probabilistic smoothing [3], prescribed mean curvature flow [4], our local,
iterative scheme, and our global, noniterative scheme. All the meshes in the paper are flat-shaded to show faceting.

Fig. 2. Our method is able to faithfully recover geometric details corrupted by noise (see the corresponding input noisy model in Fig. 3). From left to
right: ground truth, denoising results using bilateral mesh filtering [1], unilateral normal filtering [2], probabilistic smoothing [3], prescribed mean
curvature flow [4], our local, iterative scheme, and our global, noniterative scheme. Our schemes are less influenced by irregular surface sampling,
thus are consistently better at retaining/recovering features at regions with different sampling, e.g., eyes and the bottom part of the Max-Planck
model. Note that the bottom part of the model is not an open boundary and thus is not fixed during denoising.



In view that facet normals are able to better represent
local surface geometry than vertex positions, other research-
ers first filter the normal field and then reconstruct the
denoised surface from the filtered normal field. For
example, Yagou et al. proposed to use the mean, median
[5], and alpha-trimming filters [7]. Simply averaging the
neighboring normals isotropically, as done in the mean
filter, destroys fine features. Since the sharpness of local
features can be roughly measured by the difference of
neighboring facet normals, the median filter chooses the
normal with the median difference value as the new normal.
However, as the new normal is always copied from the
original normal field, it always carries the original noise to a
certain extent, making the median filter perform poorly for
highly noisy meshes. The alpha-trimming filter, as a
compromise between mean and median filters, also does
not guarantee feature-preserving denoising. Shen and
Barner [6] introduce a more effective denoising method
using a fuzzy vector median filter which first computes a
vector median of the neighboring normals and then
averages the neighboring normals weighted by their
difference to this median. However, this method is at the
cost of high time complexity. Instead of computing a vector
median to compare, Sun et al. [2] simply ignore neighboring
normals with too large difference to the current normal
during averaging, leading to a more efficient feature-
preserving denoising method. Sun et al. [21] also present a
new method for reconstructing a denoised mesh from a
filtered normal field, which we adopt in our vertex
updating step. Recently, Sun et al. [21] adopt a random
walk model to determine averaging weights. All the above
methods process the normals without considering the
original mesh parametrization. In other words, they essen-
tially handle the normals defined over the Gauss sphere,
making them unreliable to irregular surface sampling.

The bilateral filter [22] has proved to be a very effective
edge-preserving filter for image processing. It has been
extended to perform feature-preserving mesh denoising by
Fleishman et al. [1] and Jones et al. [23]. The key idea behind
the bilateral filter is to anisotropically average the signal
within a neighborhood, weighted by a monotonously
decreasing function in terms of both spatial difference and
signal difference. Directly applying the bilateral filter to
vertex positions fail to preserve features, since this would
mean using the same set of vertex positions to measure both
signal difference and spatial difference, reducing the
bilateral filter to a unilateral filter. Fleishman et al. apply
a bilateral filter to the signed distances of neighboring
vertices to the tangent plane at a vertex and displace the
vertex along its normal with the computed displacement
from the bilateral filter. Jones et al. use the bilateral filter to
average the positions obtained by projecting a vertex to the
tangent planes determined by its neighboring triangles. Sun
et al. [2] showed that Jones et al.’s method has a close
connection to the vertex updating step used in denoising
methods based on normal filtering. These two bilateral
mesh denoising methods are able to effectively remove
moderate noise but fail to recover features that are
significantly corrupted by noise. A possible reason is that
the bilateral filter is independently applied to locally defined
signals at vertices, that is, individual vertices have different
compact-support signals. In contrast, we apply the bilateral

filter to a (global) surface signal, i.e., the normal field,
defined over the whole mesh.

Most of the above-mentioned methods are local and
iterative. In recent years, several global, noniterative mesh
smoothing methods have been proposed. For example,
Nealen et al. [8] present a global smoothing method by
reconstructing the surface from the vanishing vertex
Laplacians constrained by all the vertex positions. Instead
of simply setting the Laplacians to zero, Su et al. [10] smooth
the vertex Laplacians using a mean filter. Nehab et al. [9]
introduce a global smoothing technique by taking advantage
of the common error characteristics of measured positions
and normals. Unlike the local, iterative methods, most of
which do not guarantee convergence, all these global
methods are numerically more robust. However, all of them
are isotropic and easily blur high-frequency features. In
contrast, our global, noniterative denoising method is
anisotropic and retains all-frequency geometric features
during denoising.

3 BILATERAL NORMAL FILTERING

In this section, we introduce a new bilateral filter for
processing a normal field defined over an input mesh. We
focus on triangular meshes and aim to filter the normals
defined at every triangle fi, denoted as ni.

The original bilateral filter for image denoising has the
following form [22]:

g0ðpÞ ¼ KðpÞ
X

q2NðpÞ

Wcðkp� qkÞ WsðkgðqÞ � gðpÞkÞ gðqÞ; ð1Þ

where NðpÞ defines the neighborhood of pixel position p,
KðpÞ is the normalization factor, and gðpÞ is the signal to be
processed at p, i.e., the colors defined over a uniform
regular grid in the context of image denoising. The bilateral
filter is essentially a weighted averaging filter with the
weight consisting of two parts: Wc is a monotonically
decreasing function in terms of the distance between p and
q, andWs is a monotonically decreasing function in terms of
the signal difference at p and q. Gaussian functions are often
used to represent both Wc and Ws in the literature [22].

As pointed out by Jones et al. [23], when extending the
bilateral filter to mesh denoising, vertex positions cannot
simply be considered as the signal to be processed.
Otherwise, we would have p ¼ gðpÞ, reducing the bilateral
filter to a unilateral filter. Instead, Jones et al. and Fleishman
et al. apply the filter to the signal locally defined at each
vertex, which is obtained by either projecting a vertex to the
first order surface predictors at its neighbors [23] or
projecting its neighboring vertices to the predictor at the
vertex [1]. Although the bilateral filter itself is robust to
outliers, these methods heavily depend on the approxima-
tion of the local predictors and signals, which is sensitive to
noise. The mollification step introduced by Jones et al. only
partially solves this problem, since features might be
blurred in this step and can no longer be recovered [23].

We consider a global discrete signal defined over an input
mesh: nðciÞ ¼ ni, where ci is the centroid of triangle fi.
With this configuration, we can directly apply the tradi-
tional bilateral filter to the normal field. Specifically, we
formulate bilateral normal filtering as follows:
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n
0ðciÞ ¼ KðciÞ

X

j2NðiÞ

�ijWcðkci � cjkÞWsðknðciÞ

� nðcjÞkÞ nðcjÞ;

ð2Þ

or simply

n
0
i ¼ Ki

X

j2NðiÞ

�ij Wcðkci � cjkÞ Wsðkni � njkÞ nj; ð3Þ

where Ki ¼ KðciÞ ¼ 1=
P

j2NðiÞ �ijWcðkci � cjkÞ Wsðkni �
njkÞ is the normalization factor, NðiÞ is the one-ring face
neighborhood of a face fi, and �ij is the weight to account
for the influence from surface sampling rate. Following [2],
we tested two types of one-ring face neighborhood. The first
type, denoted byNIðiÞ, is a set of faces that share edges with
fi and the second type, denoted by NIIðiÞ, is a set of faces
that share common vertices with fi. The choice of these two
types of neighborhood will be discussed in Section 5.

When the normals at two neighboring facets differ
significantly, it often implies that these two facets lie on
different sides of a sharp edge (e.g., ridge or valley). To
avoid blending sharp features, we use the signal weighting
term Ws to penalize the signal difference, simply measured
by kni � njk. Specifically, we define

Wsðkni � njkÞ ¼ exp
�

�kni � njk
2=2�2

s

�

; ð4Þ

where �s is the standard deviation, with which we adjust the
denoising power (see its detailed setting in Section 5). Apart
from a Gaussian function, we also tested the truncating
weighting function proposed in [2] and found no signifi-
cantly noticeable difference in terms of denoising results.

It is natural to assume that the influence of two normals
should be inversely proportional to the distance between
their corresponding facets and gradually vanish with
increasing distance. There are several ways to measure the
distance between two facets, e.g., geodesic distance along
the surface or Euclidian distance. We adopt the euclidian
distance for simplicity, i.e., kci � cjk, and define the spatial
weighting term as

Wcðkci � cjkÞ ¼ exp
�

�kci � cjk
2=2�2

c

�

: ð5Þ

To reduce the number of user-specified parameters, our
algorithm automatically sets the parameter �c. We have
tried several ways to determine a desired value for �c (e.g.,
as the average distance of facets in NðiÞ) and found that
using the average distance of all adjacent facets in an input
mesh generally works the best in our experiments.

Unlike images, which are always defined over uniform
regular grids, meshes are largely irregular in terms of both
connectivity and sampling. Since the normals defined at
larger facets are more likely to be faithful normals of the
underlying surface, those facets demand larger averaging
weights. This is reflected by our sampling weighting term
�ij. We have experimented different weighting functions for
�ij and found �ij ¼ Sj is a good choice, where Sj is the area
of facet fj.

4 MESH DENOISING VIA BILATERAL NORMAL

FILTERING

In this section, we present two mesh denoising schemes
based on bilateral normal filtering.

4.1 Local and Iterative Scheme

Like most previous denoising methods, our first scheme is
local and iterative. It is a two-stage iterative scheme. In the
first stage, we iteratively update the normal field; in the
second stage, we iteratively update the vertex positions
which reflect the normals computed in the first stage.

Stage 1: Normal updating. In a noisy mesh, the facet
normals are corrupted by the noise, though their computa-
tion is well defined. Applying (3) to individual normals
decreases the level of noise in the whole mesh. However, it
also possibly brings the noise from a normal to its neighbors
and vice versa. To some extent it is like an anisotropic
diffusion process. Therefore a straightforward but suitable
way to increase the degree of denoising is to apply (3)
multiple iterations in an explicit manner:

n
tþ1
i ¼ Ki

X

j2NðiÞ

!ij n
t
j; ð6Þ

where !ij ¼ �ijWcWs is the averaging weight in (3)
measured on the input mesh. We normalize the new
normals after each iteration. Theoretically, we need to
update the weighting terms, �ij, Wc, and Ws, with respect to
the newly denoised normal field at the current iteration.
However, we found that keeping the averaging weight
measured on the input mesh lead to no noticeable visual
difference, thus reducing computational cost.

Multiple iterations of the normal updating increase the
influence of the bilateral filter from a one-ring neighborhood
to a wider region, leading to a smoother mesh. Since input
meshes often have different levels of noise and automati-
cally estimating the noise level is an ill-posed problem, like
other denoising methods, we let the user control the number
of iterations to reduce the noise to a desired level.

Stage 2: Vertex updating. After obtaining the denoised
normal field, we evolve the mesh to match the new normal
field using the iterative vertex updating method proposed
by Sun et al. [2]. Our current implementation does not
handle vertices on open boundaries and simply leaves them
fixed during denoising. Like [2], we usually perform 10 or
20 iterations of vertex updating in our experiments.

We qualitatively evaluated the contributions of individual
weighting terms in (3). In Figs. 3 and 4 we show different
denoising effects with the local, iterative scheme when some
weighting terms are omitted. The comparisons show that the
filter with both the spatial weighting termWc and the signal
weighting term Ws enables better recovering of fine details
than the filter withWs only. For example, note the denoising
difference in the left eye of the Max-Planck model between
the middle and middle right images in Fig. 3 and in the
mouth and eye regions in Fig. 4. Fig. 3 also shows that by
introducing the sampling weighting term �ij, our denoising
result is consistent even at regionswith significantly different
sampling rates, e.g., the highlighted bottom part of the Max-
Planck model. The sampling term �ij also helps to recover
fine details, e.g., the left eye of the Max-Planck model.

4.2 Global and Noniterative Scheme

Instead of applying our local bilateral filter iteratively to
mimic a wider filter, an alternative solution is to solve for all
the new normals in a single pass by minimizing
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Es ¼
X

i

Ai

�

�

�

�

�

n
0
i �Ki

X

j2NðiÞ

!ijn
0
j

�

�

�

�

�

2

; ð7Þ

where n
0
i are the unknown normals for the denoised mesh.

This can be regarded as an implicit updating compared to
the explicit updating performed in (6) (cf. explicit diffusion
[24] and implicit diffusion [25]). When updating the
normals explicitly using (6), multiplying both sides of the
equation by a constant has no effect on the solution.
However, when solving the normals in a least-squares
sense, which will be described shortly, changing the weight
of each equation (i.e., n0

i �Ki

P

j2NðiÞ !ijn
0
j ¼ 0) does affect

the solution. To make the optimization avoid bias toward
regions with dense sampling, each equation is weighed by
Ai ¼ Si= �S, where Si is the area of facet fi and �S is the
average triangle area over the entire mesh. Note that !ij

alone (i.e., without Ai) cannot address the bias problem,
since !ij is only used to average neighboring normals inside
each equation and thus cannot balance the relative
importance of each equation during optimization.

It can be shown that (7) is closely related to Laplacian
optimization over the normal field. By simple derivation,
we have

Es ¼
X

i

Ai

�

�

�

�

�

Ki

X

j2NðiÞ

!ijðn
0
j � n

0
iÞ

�

�

�

�

�

2

¼
X

i

AikLðn
0
iÞk; ð8Þ

where L is the Laplace operator [8] with our bilateral
weighting. The so-called Laplacian coordinates, LðxÞ, have
been extensively used to represent local geometric details in
the literature of differential-based mesh deformation (see
[26] and the references therein). Since minimizing Es leads
to vanishing Laplacian coordinates defined over the normal
field, this process completely removes the geometric details,
i.e., the high-frequency information, from the normal field.
Note that unlike the traditional Laplace operator, where the
weighting schemes (e.g., uniform weighting or cotangent
weighting) are all isotropic, our bilateral weighting makes
Es result in an anisotropic smoothness term.

The minimization of Es alone is under-constrained. More
importantly, we intend to let the user control the degree of
denoising, retaining the signal of the original normal field to

some extent. Therefore, similar to the position-based
Laplacian optimization framework [8], we introduce a data
term by using all the original normals as the soft constraints:

Ed ¼
X

i

Aikn
0
i � nik

2: ð9Þ

Our final optimization is formulated as

argmin
fn0

ig

ð1� �Þ Es þ � Ed; ð10Þ

where � 2 ½0; 1� is a parameter to balance the smoothness
and data terms. In other words, the user can adjust � to
control the degree of denoising: smaller values of � give
more power to the smoothness term, thus leading to
smoother meshes (see Fig. 6). Note that the above
optimization is effectively equivalent to performing one
step of implicit updating of ni with step size related to �.
The resulting optimization is essentially a linear least-
squares optimization problem, which can be efficiently
solved using many standard numerical solvers [27], e.g.,
conjugate gradient. Multigrid algorithms [28] can also be
adopted for faster computation. The differences between
our optimization and Laplacian mesh optimization pro-
posed by Nealen et al. [8] are as follows: First, our Laplacian
optimization is performed over the normal field instead of
the vertex positions. Second, we use bilateral weighting
rather than uniform/cotangent weighting, making our
method faithfully preserve features.

5 RESULTS AND DISCUSSION

We have tested our denoising schemes on a variety of
models with either raw or synthetic noise. Like previous
works, we mostly use models with synthetic noise for
quantitative analysis of the effectiveness of our method.
Most of our synthetic noise is generated by a zero-mean
Gaussian function with standard deviation � proportional
to the mean edge length of the input mesh. Figs. 1, 2, 3, 5, 6
(Bottom), and 11, 12, 13 show some denoising results using
our schemes for models with synthetic noise, and Figs. 4, 6
(Top), and 14, 15, 16 for models with raw noise. All the
models are flat-shaded to show faceting effect. Observe that
both our local and global schemes effectively remove noise
while preserving features, e.g., sharp features in CAD-type
models (Figs. 1, 6 (Bottom), 11 and 13) or fine details in
nonCAD models (Figs. 2, 6 (Top), 14, 15 and 16).

Parameters. Like previous denoising methods, we fine
tune the parameters to produce the best results. The
parameters used for some denoising examples are listed
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Fig. 3. Contributions of individual weighting terms in (3). The Max-
Planck model is resampled (by decreasing the density of the right half
of the model) and artificially corrupted by Gaussian noise with
standard deviation � ¼ 0:1 mean edge length (Left). The denoising
comparison results with our local, iterative scheme show that the filter
with both the spatial weighting term Wc and the signal weighting term
Ws (Middle Right) is able to recover fine details better than the filter
with only the signal weighting term Ws (Middle Left). The further
introduction of the sampling weighting term �ij gives the best result
(Right) and makes the result less influenced by irregular surface
sampling.

Fig. 4. Left: an noisy input model. The local, iterative scheme, with both
spatial weighting term Wc and signal weighting term Ws (Right) gives
better denoising results than with only signal weighting termWs (Middle).



in Table 1. BMF, UNF, PS, PMC, Scheme I and Scheme II
stand for bilateral mesh filtering [1], unilateral normal
filtering [2], probabilistic smoothing [3], prescribed mean
curvature flow [4], our local, iterative scheme and our
global, noniterative scheme, respectively. The parameter
sets for these methods are: BMF (vertex iterations); UNF
(normal updating iterations, feature detection threshold,
vertex updating iterations, neighborhood size NI, or NII);
PS (vertex iterations, time step, feature detection threshold);
PMC (integration scheme, number of steps, step width,
feature detection parameter); Scheme I (normal updating
iterations, �s, vertex updating iterations, neighborhood
size); Scheme II (�, �s, vertex updating iterations, neighbor-
hood size). The column Ev lists the vertex-based errors
between the denoised meshes and the corresponding
ground-truth models, with the smallest errors among these
methods highlighted. All the timings are measured on a
notebook with Duo CPU 2.2 GHz and 2 GB RAM. Note that
the implementation we use for PMC comes with a simple
CG-solver for the implicit flow integration and using direct
solvers is expected to bring an enormous speedup.

Among the parameters, the number of normal updating
iterations for our local, iterative scheme, � for our global,

noniterative scheme, and �s for both schemes influence the
degree of denoising the most significantly. Fig. 6 shows that
larger values of �s or � lead to smoother results. In our
experiments, �s typically lies in the range of [0.2-0.6], with
higher values for higher level of noise. We found that the
first type of face neighborhood NI works well for nonCAD
models and NII is more suitable for CAD-like models. We
speculate that more facets involved in NII are able to better
characterize sharp features, especially sharp edges. In
addition, given the same number of normal updating
iterations or the same value of �, NII generally produces
smoother results.

Comparisons with previous methods. To demonstrate
the effectiveness of our denoising schemes, we comparewith
four exemplary denoising techniques, namely, bilateralmesh
filtering (vertex-based) [1], unilateral normal filtering [2],
probabilistic smoothing [3], and prescribed mean curvature
flow [4]. For all these methods and ours, we chose the
parameters that produce visually the best denoising results,
as summarized in Table 1. Figs. 1, 2, and 11, 12, 13, 14, 15, 16
show some of comparison examples, with magnified views
clearly showing the differences. Both our schemes usually
outperform the previous methods at challenging regions
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TABLE 1
Parameter Settings and Timings

Fig. 5. Our denoising schemes are more robust to irregular surface
sampling than previous denoising methods like [2] (Left). Our global,
noniterative scheme (Right) outperforms our local, iterative scheme
(Left) at regions with highly different sampling, thus better preserving
global structures (highlighted by overlaid lines). The noisy input model is
shown in Fig. 1.

Fig. 6. Top: our local, iterative scheme produces different degrees of
denoising results from an noisy input model (Left) with respect to
different values of �s (Middle: �s ¼ 0:3 and Right: �s ¼ 0:9). Bottom: our
global, noniterative scheme generates smoother denoising results with
smaller values of � (Left: input noisy model; Middle: denoising with
� ¼ 0:15; Right: � ¼ 0:03).

Fig. 7. Normal errors resulting from our schemes and unilateral normal
filtering [2]. Our schemes consistently lead to smaller normal errors than
unilateral normal filter.



with either irregular surface sampling or sharp features. As
seen from these figures, bilateral mesh filtering often blurs
sharp edges, e.g., the blurred fandisk model (see per-vertex
errors visualized in Fig. 10). Unilateral normal filtering
consistently does not perform well at regions with signifi-
cantly different sampling, as shown in Fig. 5. Since both the
probabilistic smoothing method and the mean curvature
flowarehighlydependent on the approximation of curvature
tensors, whose computation is not robust at regions with
sharp features or irregular tessellations, these methods
perform unreliably near such regions (Figs. 1, 11, and 13).

We have also quantitatively analyzed the differences
between our schemes and previous approaches. Specifically,

we measure the L2 vertex-based error Ev between the
denoised mesh and the ground-truth model, as shown in
Table 1. Please refer to [2] for the formulation of Ev ((29) in
[2]). Note that although we did not deliberately adjust the
parameters toward small values of Ev, both our schemes
consistently give lower errors than the compared methods.
Since the signal we are processing is a normal field, we also
measure the difference between the normal field of the
original model (before addition of noise) and the denoised
normal field. Following [2], we use the mean square angular
error (MSAE) as the error metric and compare the normal
errors between our local, iterative scheme and unilateral
normal filtering in terms of number of iterations (Fig. 7). For
comparison, we also plot the normal errors resulting from
our global scheme in the same diagrams, though this scheme
is noniterative. It can be seen that the global, noniterative
scheme generally leads to smaller normal errors. For
iterative methods, including our local, iterative scheme
and unilateral normal filtering, the normal errors generally
form a V-shaped curve with the smallest error usually
around at five iterations in our experiments. Although our
local, iterative scheme generally does not converge to a
noise-free model, by applying our scheme to a noise-free
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Fig. 8. Our local, iterative scheme (�s ¼ 0:2) is applied to a noise-free
model (Left). The colored models show the visualization of errors
measured as the difference of individual vertex positions between the
processed models and the original model.

Fig. 9. Denoising a noisy cylinder model (Left). Our local scheme
(Middle) better recovers geometric features than the global scheme
(Right) when the level of noise is high.

Fig. 10. The errors between the denoised results (Fig. 11 Top) and the
ground truth, measured as the positional difference between corre-
sponding vertices.

Fig. 11. From left to right columns: input noisy model with ground truth highlighted, denoising results with [1], [2], [3], [4], and our local and global
schemes. The top fandisk model is corrupted with 0.1 mean edge length gaussian noise while the bottom one is corrupted with 0.5 mean edge length
impulsive random noise.



model (Fig. 8) we show that geometric features can still be

well preserved even after a moderate number of iterations.
Local scheme versus global scheme. Experiments show

that our local and global denoising schemes have their

own advantages and disadvantages. The global scheme is

more robust to irregular surface sampling, as clearly

shown by the denoising example of a CAD-like model in

Fig. 5. This model has a very different sampling rate at one

of its sharp corners, making the local scheme behave

slightly differently when recovering the geometry at the

highlighted ridge near that corner. In contrast, our global

scheme better retains the global structure of the ridges,

possibly because it distributes the influence from the
irregular sampling to the whole surface through optimiza-
tion. In addition, we found that the global scheme is able
to better preserve fine details, as shown in Figs. 2, 12, 13,
14, 15, and 16. However, the better feature-preservation
property of our global scheme may become undesirable
when denoising high level of noise. Since features in
highly noisy meshes are seriously corrupted, iterative
methods are usually better in recovering the features
gradually. Fig. 9 shows that our local, iterative scheme
recovers the whole shape of the cylinder model much
better than the global, noniterative scheme. In terms of
computational cost, the local, iterative scheme is faster and
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Fig. 13. From left to right columns: ground truth, input noisy model (by introducing 0.1 mean edge length gaussian noise into the ground truth),
denoising results with [1], [3], and our local and global schemes.

Fig. 12. From left to right columns: ground truth, input noisy model (by introducing 0.2 mean edge length gaussian noise into the ground truth),
denoising results with [2], [4], and our local and global schemes.

Fig. 14. Denoising results of raw hand. From left to right columns: original noisy model, denoising results with [1], [3], our local, iterative scheme, and
our global, noniterative scheme.



has lower memory consumption (see Table 1). Similar to
previous local, iterative methods, our local scheme is also
highly scalable to models of large size.

Limitations. Like most previous denoising methods, our
local, iterative method cannot guarantee convergence, as
shown in Fig. 7. In other words, more iterations lead to
smoother normal fields (i.e., possibly larger normal errors),
no matter what level of noise there is essentially in an input
model. Therefore, the user needs to choose an appropriate
number of iterations (usually around five in our experi-
ments) to achieve the desired results. In contrast, our global,
noniterative scheme is unconditionally stable. In addition,
theoretically both our schemes cannot guarantee volume
preservation, though we did not observe any noticeable
shrinking case in practice. Finally, our current implementa-
tion simply fixes open boundaries during denoising, which
might be undesirable for some scenarios.

6 CONCLUSION

We have presented two efficient and effective denoising
schemes for irregular triangular meshes. Our denoising
schemes are based on a novel bilateral normal filter. We
regard the facet normals as a surface signal parameterized
on an input mesh and formulate the influence of both
spatial difference and signal difference into bilateral
weighting. Both our local, iterative scheme and global,
noniterative schemes are robust to irregular surface
sampling and are able to retain/recover geometric details,
achieving better results than the state-of-the-art methods.
Our bilateral normal filtering can be easily extended to filter
other types of vector fields defined over a manifold, e.g.,
surface normals from photometric stereo or raw normals
from scanning devices defined over point clouds.
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