INFO601_CMI Algorithmique numérique

Introduction au domaine via la méthode des moindres carrés

[Jacques-Olivier Lachaud]

Modèle prédictif à partir de données

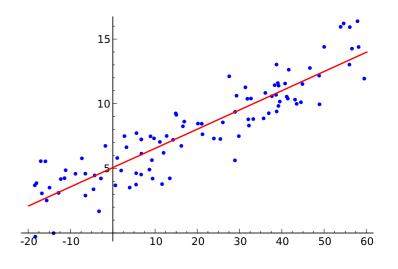
- données observées $[(x_1,y_1),...,(x_n,y_n)]$
- peuvent conduire à une prédiction?
- $prédiction: f(x) \text{ avec } \forall i, f(x_i) \approx y_i$
- famille paramétrée de modèles $f_{oldsymbol{lpha}}$
- modèle prédictif le plus "pertinent"?
 - \Rightarrow Trouver α^* tel que f_{α^*} prédit au mieux les y à partir des x

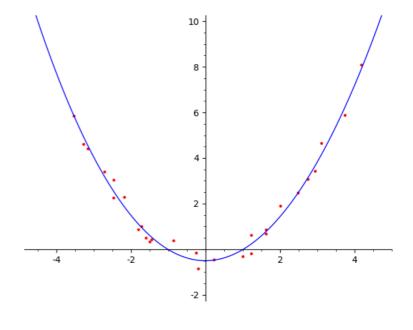
modélisation

- identifier une famille de fonction f_{α}
- caractériser les résultats pertinents

optimisation

- écrire le problème sans forme soluble
- chercher le meilleur paramètre $lpha^*$





Méthode des moindres carrés ordinaires

Gauss, Legendre, circa 1800

modélisation

• forme le vecteur des erreurs ou résidu

$$\boldsymbol{r} = \begin{pmatrix} y_1 - f_{\alpha}(x_1) \\ \vdots \\ y_n - f_{\alpha}(x_n) \end{pmatrix}$$

erreur quadratique (norme euclidienne au carré)

$$E(\alpha) = \|r\|^2 = \sum_{i=1}^{n} (y_i - f_{\alpha}(x_i))^2$$

- $E(\alpha)$ est une fonction coût
- modèle pertinent = petit coût

optimisation

- $\alpha^* \coloneqq \operatorname*{arg\,min}_{\boldsymbol{\alpha} \in D} E(\boldsymbol{\alpha})$
- problème difficile en général
- min $E \Rightarrow$ dérivées nulles
- \Rightarrow gradient $\nabla E = 0$
- trouver les zéros du gradient
- algorithmes de descente en gradient
- résolution de systèmes linéaires

Régression linéaire simple

- ajustement droite $f_{\alpha}(x) = \alpha_1 x + \alpha_2$
- erreur quadratique $E(\alpha_1, \alpha_2) = \sum_{i=1}^n r_i^2 = \sum_{i=1}^n (y_i \alpha_1 x_i + \alpha_2)^2$

$$E(\alpha_1,\alpha_2) = (\alpha_1 \ \alpha_2) \underbrace{\left(\sum x_i^2 \ \sum x_i \right)}_{M} \binom{\alpha_1}{\alpha_2} - 2(\alpha_1 \ \alpha_2) \underbrace{\left(\sum x_i y_i \right)}_{\mathbf{v}} + \underbrace{\sum y_i^2}_{\mathbf{c}}$$

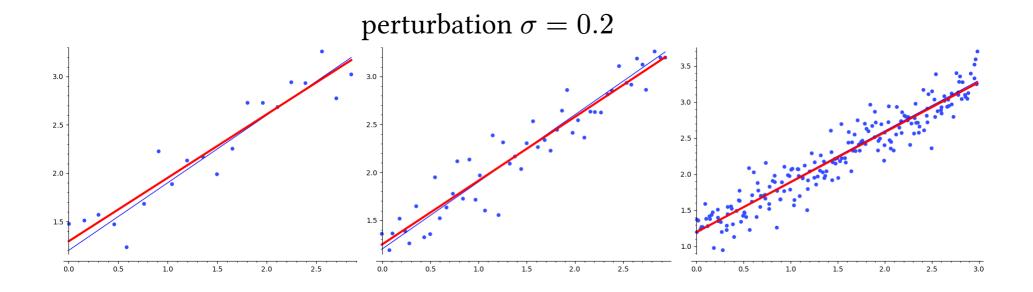
$$= \boldsymbol{\alpha}^{\mathsf{T}} M \boldsymbol{\alpha} - 2 \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{v} + c$$

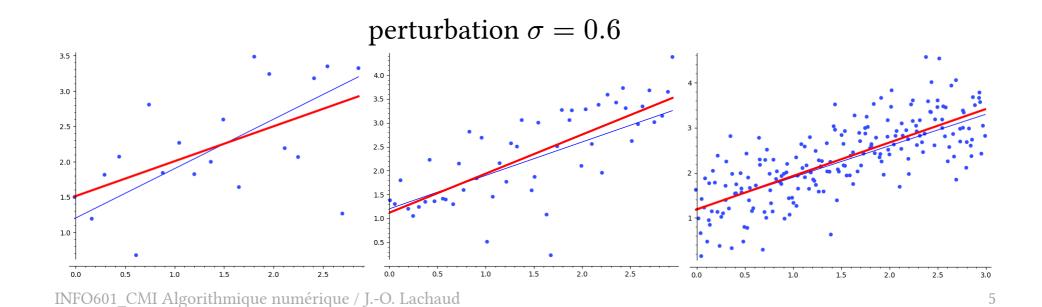
- forme quadratique définie positive $\Rightarrow E$ a un seul minimum
- optimisation mieux ici de chercher le zéro du gradient de E

$$\boldsymbol{\nabla} E = \begin{pmatrix} \frac{\partial E}{\partial \alpha_1} \\ \frac{\partial E}{\partial \alpha_2} \end{pmatrix} = \begin{pmatrix} 2m_{11}\alpha_1 + (m_{12} + m_{21})\alpha_2 - 2v_1 \\ (m_{12} + m_{21})\alpha_1 + 2m_{22}\alpha_2 2v_2 \end{pmatrix} = \underbrace{(\boldsymbol{M} + \boldsymbol{M}^\mathsf{T})}_{2\boldsymbol{M}} \boldsymbol{\alpha} - 2\boldsymbol{v}$$

$$\alpha^*$$
 solution de $\nabla E = 0 \Leftrightarrow M\alpha = v$, i.e. $\alpha^* = M^{-1}v$

Régression linéaire simple





Des garanties théoriques

Si $y_i = \alpha_1 x_i + \alpha_2 + \varepsilon_i$, avec ε_i perturbation de la i-ème donnée

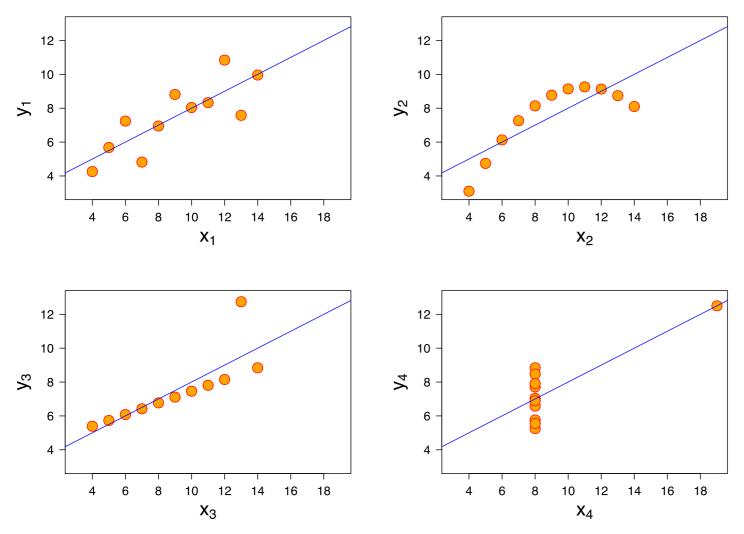
$$\underbrace{\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\alpha} + \boldsymbol{\varepsilon}}_{\text{écriture matricielle}} \Leftrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

Thm [Gauss-Markov]: parmi tous les estimateurs linéaires non biaisés, l'estimateur par moindres carrés présente une variance minimale, i.e. $\|\alpha^* - \alpha\|^2$ est minimal. C'est le **BLUE**!

hypothèses

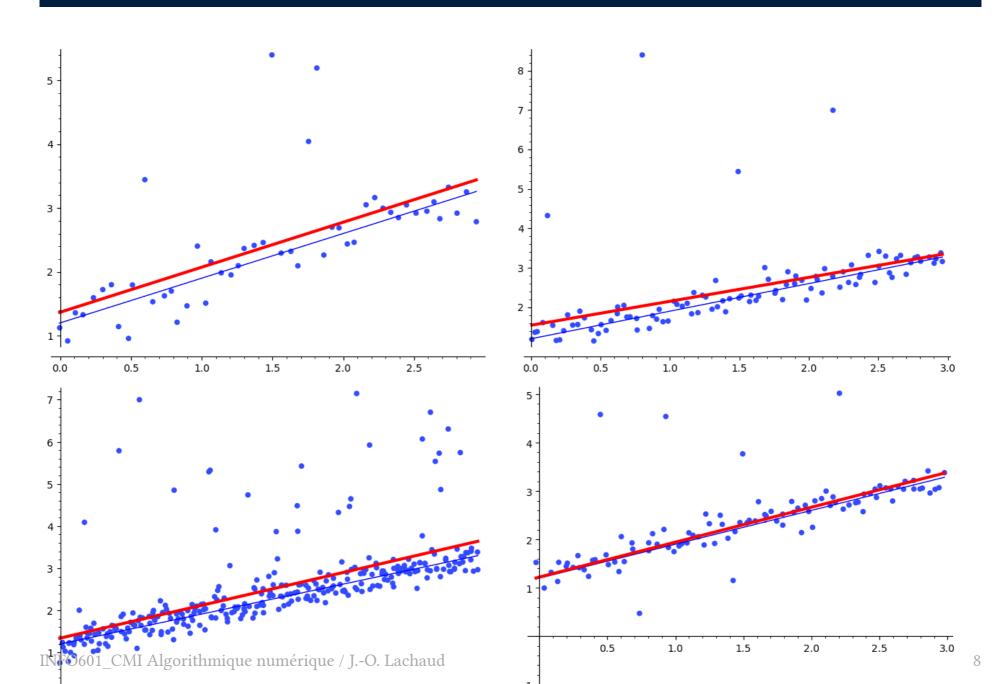
- $\mathbb{E}(\varepsilon_i) = 0$ "les erreurs sont sans biais"
- $\operatorname{Var}(\varepsilon_i) = \sigma^2 < +\infty$ "les erreurs ont même variance, finie"
- $\mathbb{C}\text{ov}(\varepsilon_i, \varepsilon_j) = 0, i \neq j$ "les erreurs sont non corrélées"
- estimateur linéaire de α_j : $\hat{\alpha}_j=c_1y_1+\ldots+c_ny_n$, avec c_i qui peuvent dépendre des x_i

Attention à l'interprétation du résultat!



[Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27, 17–21]

Problème des données aberrantes (outliers)



Elimination des données aberrantes

utilisation des résidus

enlever 10% des données ayant le plus gros résidu

heuristiques

random forest, isolation forest, distance au barycentre des k-NN

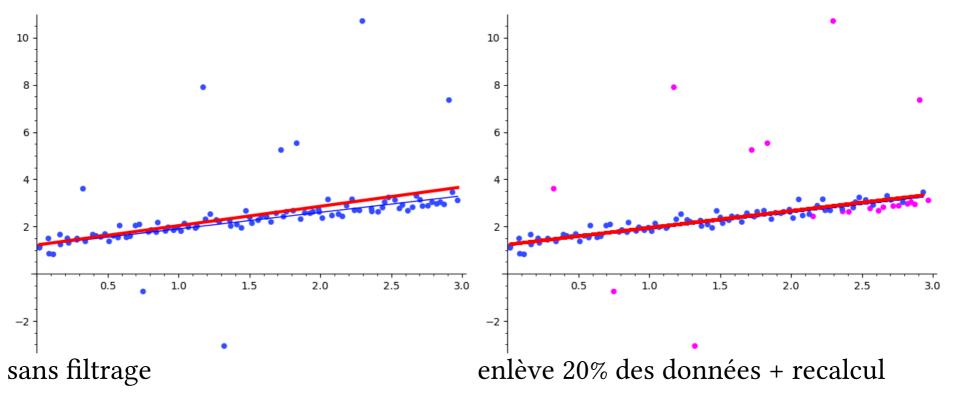
Autres méthodes statistiques

• Theil–Sen estimator: pente α_1 en prenant le médian des pentes de tous les couples de points.

Problème de paramétrages, de choix de modèles, d'hypothèses sur les données, de temps de calcul, ...

Exercice : Complexité de la régression linéaire (n données) ? De l'estimateur Theil-Sen ?

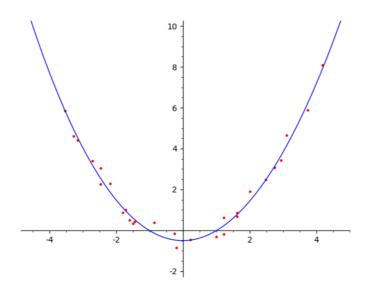
Elimination des données aberrantes



- on calcule $lpha^*$ pour toutes les données
- ullet on trie les données selon leur résidus r^2
- on garde les premiers 80% des données
- on recalcule $lpha^*$ pour ces données

Et si on cherche des modèles plus complexes que la droite ?!

Régression linéaire multiple



- on suppose que les données $(x_i,y_i)_{i=1,\dots,n}$ suivent une loi parabolique
- pour chaque donnée, $y_i=\alpha_1x_i^2+\alpha_2x_i^2+\alpha_3+\varepsilon_i$, avec ε_i une erreur

$$\underbrace{\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\alpha} + \boldsymbol{\varepsilon}}_{\text{écriture matricielle}} \Leftrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1^2 & x_1 & 1 \\ \vdots & \vdots & \vdots \\ x_n^2 & x_n & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

La relation est encore linéaire!

Régression linéaire multiple

• vecteur résidu : $r = Y - X\alpha$, erreur quadratique (ou fonction coût):

$$E(\alpha) = \|\mathbf{r}\|^2 = \mathbf{r}^\mathsf{T} \mathbf{r} = (\mathbf{Y} - \mathbf{X}\alpha)^\mathsf{T} (\mathbf{Y} - \mathbf{X}\alpha)$$
$$= \alpha^\mathsf{T} \underbrace{\mathbf{X}^\mathsf{T} \mathbf{X}}_{\mathbf{M}} \alpha - 2\alpha^\mathsf{T} \underbrace{\mathbf{X}^\mathsf{T} \mathbf{Y}}_{\mathbf{v}} + \underbrace{\mathbf{Y}^\mathsf{T} \mathbf{Y}}_{c}$$

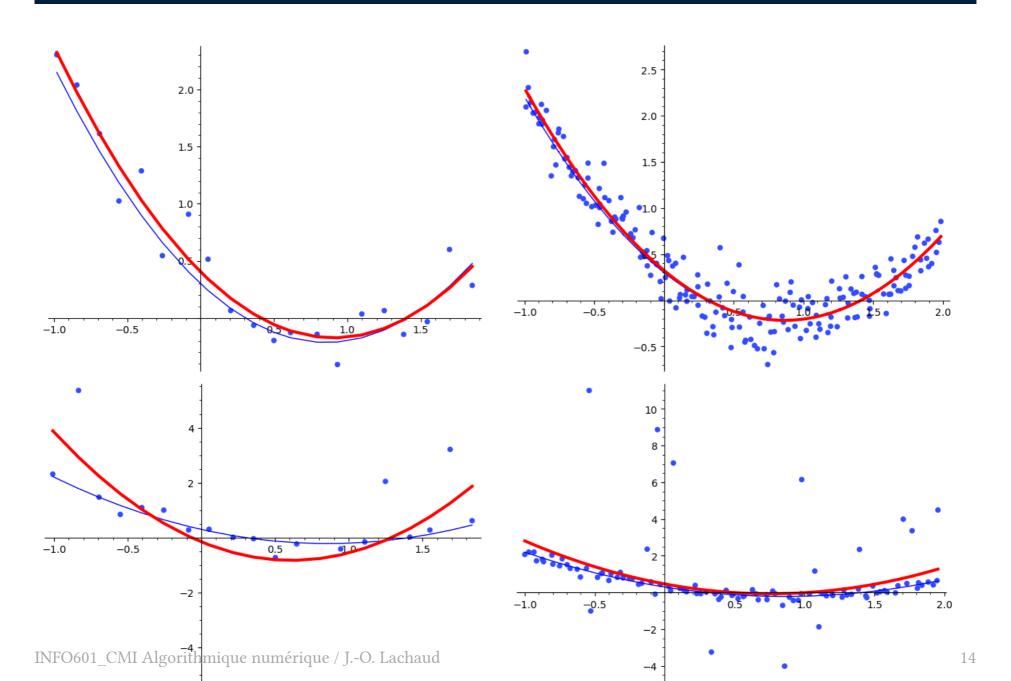
$$E(\alpha_1,\alpha_2) = (\alpha_1 \ \alpha_2)\underbrace{\begin{pmatrix} \sum x_i^2 \ \sum x_i \\ \sum x_i \ \sum 1 \end{pmatrix}}_{M} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} - 2(\alpha_1 \ \alpha_2)\underbrace{\begin{pmatrix} \sum x_i y_i \\ \sum y_i \end{pmatrix}}_{\mathbf{v}} + \underbrace{\sum y_i^2}_{c}$$

• optimisation en cherchant le zéro du gradient de ${\cal E}$

$$\mathbf{\nabla} E = \frac{\partial E}{\partial \boldsymbol{\alpha}} = 2\mathbf{X}^\mathsf{T} \mathbf{X} \boldsymbol{\alpha} - 2\mathbf{X}^\mathsf{T} \mathbf{Y} = 2\mathbf{M} \boldsymbol{\alpha} - 2\mathbf{v}$$

$$m{lpha}^*$$
 solution de $m{
abla} E = 0 \Leftrightarrow m{lpha}^* = M^{-1} m{v} = (m{X}^{\mathsf{T}} m{X})^{-1} m{X}^{\mathsf{T}} m{Y}$

Régression linéaire multiple



Méthode des moindres carrés

Régression linéaire multiple

- ajuster un polynôme de degré quelconque reste linéaire
- ajuster un plan à des données (x_i,y_i,z_i) reste linéaire
- ajuster une surface polynomiale à des données (x_i,y_i,z_i) reste linéaire

Moindres carrés généralisés

- donner un poids $w_i=\frac{1}{\sigma_i}$ différent à chaque donnée (typique d'une incertitude sur une mesure)
- donner une matrice de variance/covariance Σ entre les données
- ⇒ une approche similaire à la précédente fonctionne

Moindres carrés non linéaires

- ajuster une fonction $y = \cos(\alpha_1 x + \alpha_2)$ n'est pas linéaire
- \Rightarrow mais on peut ajuster $acos(y) = \alpha_1 x + \alpha_2$!
- ajuster une fonction $y = \exp \left(-\alpha_1 (x \alpha_2)^2\right)$ n'est pas linéaire

Quelques exercices

Exercice 1: On cherche à ajuster un polynôme de degré 3 à des données $(x_i,y_i)_{i=1,\dots,n}$. Explicitez la relation matricielle ${\pmb r}={\pmb Y}-{\pmb X}{\pmb \alpha}$.

Exercice 2: On vous donne les données suivantes : (-1,2),(1,3),(3,5),(4,6),(6,8) Trouvez la droite de meilleur ajustement.

Exercice 3: On dispose d'un nuage de points $(x_i,y_i,z_i)_{i=1,\dots,n}$. Proposez une approche pour trouver un plan approchant ces points.

Exercice 4: Est-ce que l'on obtient la même droite d'ajustement si on ajuste plutôt les x par rapport aux y? On suppose donc que les données suivent

$$x_i = \beta_0 y_i + \beta_1 + \varepsilon_i'$$