Linear algebra cheat sheet (wip) by JOL

Notations (with abridged version)

scalars $\alpha, \beta, \gamma, \delta, \varepsilon$ (real values)
vectors $\boldsymbol{b}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{x}, \boldsymbol{y} \quad \boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{ccc}x_{1} & \ldots & x_{n}\end{array}\right]^{\top}=\left[x_{i}\right]$
matrices $A, C, M, L, U \quad A=\left[\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \ldots & a_{m n}\end{array}\right]=\left[a_{i j}\right]$
a matrix $A_{m \times n}$ with m rows and n columns is a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

Vector operations

- usual(+,-,ext. product) $\alpha \boldsymbol{x}+\beta \boldsymbol{y}=\left[\alpha x_{i}+\beta y_{i}\right]$
- scalar product $\boldsymbol{x} \cdot \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i}=\boldsymbol{x}^{\top} \boldsymbol{y}$
- 2-norme (Euclid) $\|\boldsymbol{x}\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}=\sqrt{\boldsymbol{x}^{\top} \boldsymbol{x}}$
- 1-norme $\|\boldsymbol{x}\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$
- ∞-norme $\|\boldsymbol{x}\|_{\infty}=\max \left(\left|x_{1}\right|, \cdots,\left|x_{n}\right|\right)$
- norms mesure length of vectors
- norms are equivalent up to a \sqrt{n} constant
- Euclidean norm is invariant to rigid transformation (i.e. multiplication by an orthogonal matrix).

Matrix operations

- usual(+,--,ext. product) $\alpha A+\beta C=\left[\alpha a_{i j}+\beta c_{i j}\right]$
- product if $A_{m \times n}$ and $B_{n \times p}$, then $C=A B$ is a matrix of size $m \times p$, and $c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}$
- $\left[\begin{array}{c}\left.\begin{array}{|c|}\hline \boldsymbol{a} \\ \vdots \\ \boldsymbol{a}_{m}^{\top} \\ \hline\end{array}\right]\end{array}\right.$

$$
\left.\boldsymbol{b}_{p}\right]=\left[\begin{array}{ccc}
\boldsymbol{a}_{1}^{\top} \boldsymbol{b}_{1} & \ldots & \boldsymbol{a}_{1}^{\top} \boldsymbol{b}_{p} \\
\vdots & \ddots & \vdots \\
\boldsymbol{a}_{m}^{\top} \boldsymbol{b}_{1} & \ldots & \boldsymbol{a}_{m}^{\top} \boldsymbol{b}_{p}
\end{array}\right]=\left[\boldsymbol{a}_{i}^{\top} \boldsymbol{b}_{j}^{\top}\right]
$$

- product is associative $A(B C)=(A B) C$,
- product is not commutative $A B \neq B A$
- transpose $A^{\top}:(A+B)^{\top}=A^{\top}+B^{\top},(A B)^{\top}=B^{\top} A^{\top}$
- conjugate transpose A^{*} : same as A^{\top} if A real-valued
- norm $\left\|\|_{*}\right.$ induced by vector norm for $* \in\{1,2, \infty\}$
$\|A\|_{*}:=\sup _{\boldsymbol{x} \neq \mathbf{0}} \frac{\|A \boldsymbol{x}\|_{*}}{\|\boldsymbol{x}\|_{*}}$ or (same) $\|A\|_{*}:=\sup _{\boldsymbol{x} \neq \mathbf{0},\|\boldsymbol{x}\|_{*}=1}\|A \boldsymbol{x}\|_{*}$
- 1-norm: column sum $\|A\|_{1}:=\max _{j} \sum_{i}\left|a_{i j}\right|$
- ∞-norm: row sum $\|A\|_{\infty}:=\max _{i} \sum_{j}\left|a_{i j}\right|$
- 2-norm: spectral row $\|A\|_{2}:=\sqrt{\lambda_{\max }\left(A^{*} A\right)}$
- Fröbenius norm: $\|A\|_{F}:=\sqrt{\operatorname{trace}\left(A^{*} A\right)}$
- $\|A\| \geq 0, \quad\|A\|=0 \Leftrightarrow A=0, \quad\|\alpha A\|=|\alpha|\|A\|$
- $\|A+B\| \leq\|A\|+\|B\|$,
$\|A B\| \leq\|A\|\|B\|$

Specific matrices

- identity matrix of size $n \times n \operatorname{Id}_{n}:=\left[\begin{array}{lll}1 & & \\ & \ddots & \\ & \underbrace{}_{\text {diagonal } D} D \\ \left.\begin{array}{llll}a_{1} & & \\ & \ddots & \\ & & a_{n}\end{array}\right] & \underbrace{\left[\begin{array}{ccc}a_{11} & & \\ \vdots & \ddots & \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]}_{\text {lower triangular } L} \underbrace{\left[\begin{array}{ccc}a_{11} & \ldots & a_{n}\end{array}\right]}_{\text {upper triangular } U} \begin{array}{lll} & \ddots & \vdots \\ & & a_{n n}\end{array}]\end{array}\right.$
- symmetric matrix $A^{\top}=A$, antisymmetric $A^{\top}=-A$
- orthogonal matrix $A^{\top} A=A A^{\top}=\mathrm{Id}_{n}, \operatorname{det}(A)= \pm 1$, and rows/cols of A forms an orthonormal basis
- if A orthogonal and $\operatorname{det}(A)=1$, then A is a rotation
- $D D^{\prime}$ is diagonal, $L L^{\prime}$ is lower triangular, $U U^{\prime}$ is upper triangular

Invertibility, determinant of matrix $A_{n \times n}$

- A is invertible iff (i) $\exists B, B A=\operatorname{Id}_{n}$, (ii) $\operatorname{det}(A) \neq 0$, (iii) $\operatorname{rank}(A)=n$, or (iv) $A \boldsymbol{x}=\mathbf{0}$ has only $\boldsymbol{x}=\mathbf{0}$ as solution.
- $\operatorname{det}\left(\left[a_{11}\right]\right)=a_{11}, \operatorname{det}(A)=\sum_{i} a_{i j} \Delta_{i j}$, where cofactor $\Delta_{i j}:=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$, if $A_{i j}$ is the matrix A without row i and column j.
- if A is invertible, $A^{-1}=\frac{\left[\Delta_{i j}\right]}{\operatorname{det}(A)}, \Rightarrow$ solve $A \boldsymbol{x}=\boldsymbol{b}$

Cramer's rule $x_{i}=\operatorname{det}\left(\left[\begin{array}{ccccc}a_{11} & \cdots & b_{1} & \cdots & a_{1 n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{n 1} & \cdots & b_{n} & \cdots & a_{n n}\end{array}\right]\right) / \operatorname{det}(A)$

- complexity of above is $\mathcal{O}(n!)$, used when $n \leq 4$
- determinant of diagonal or triangular matrix is product of diagonal elements
- matrix condition $K_{p}(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}$,
$K_{2}(A)=\frac{\left|\sigma_{\max }(A)\right|}{\left|\sigma_{\min }(A)\right|}$
- $K(A) \geq K\left(\operatorname{Id}_{n}\right)=1$ for any p-norm

Solving linear systems $A \boldsymbol{x}=\boldsymbol{b}$

- if A is " L ", easy to solve $L \boldsymbol{x}=\boldsymbol{b}$ in n^{2} flops
- if A is " U ", easy to solve $U \boldsymbol{x}=\boldsymbol{b}$ in n^{2} flops
- "LU" factorization: find L, U with $A=L U$,
- L and U found by Gauss elimination in $\frac{2}{3} n^{3}$ flops
- solve $L \boldsymbol{y}=\boldsymbol{b}$ then $U \boldsymbol{x}=\boldsymbol{y}$
- "PLU" factorization: add permutation mat. P
- $P A=L U\left(\right.$ with $\left.P^{\top}=P^{-1}\right)$
- look for the biggest pivot
- A invertible $\Leftrightarrow A$ has a PLU factorization
- Cholesky factorization
- A SPD: $A=A^{\top}$ and $\forall \boldsymbol{x} \neq 0, \boldsymbol{x}^{\top} A \boldsymbol{x}>0$
- find L with $A=L L^{\top}$ in $\frac{1}{3} n^{3}$ flops
- faster and more stable than PLU
- variant as $A=L D L^{\top}$

Numerical stability of \tilde{f} wrt f

- machine precision \mathfrak{u} ($\approx 1 e-16$ with double)
- forward error $\|\tilde{f}(d)-f(d)\| /\|f(d)\|$ ("aval")
- backward error $\|\tilde{d}-d\| /\|d\|$, where $f(\tilde{d})=\tilde{f}(d)$
- forward stability: forward error is $\mathcal{O}(u)$, e.g. fl, \otimes
- backward stability: backward error is $\mathcal{O}(u)$, e.g. std operations, scalar/matrix product, etc
- forward error $=K_{\text {rel }}(f) \times$ backward error
- forward stable \Rightarrow backward stable

